Topic Content:
- Multiplication of Fractions
- Division of Fractions
Multiplication of Fractions:
To multiply fractions, you need to:
1. multiply the denominators and
2. reduce the result to its lowest value, if necessary.
Worked Example 8.2.1:
Solve:
\(\frac{3 }{4}\: \times \: \frac{5 }{6} \)
Solution
\(\frac{3 }{4}\: \times \: \frac{5 }{6} \\ = \frac{3 \: \times \: 5}{4 \: \times \: 6} \\ = \frac{15}{24} \\ = \frac{5}{8}\)Worked Example 8.2.2:
Solve:
i. \(\frac{2 }{7}\: \times \: \frac{4}{5} \)
ii. \(\scriptsize 3 \normalsize \frac{5 }{17}\: \times \: \scriptsize 2 \normalsize \frac{5 }{6} \: \times \: \scriptsize 1 \normalsize \frac{4}{8}\)
Solution
i. \(\frac{2 }{7}\: \times \: \frac{4}{5} \)
Solution
\(\frac{2 }{7}\: \times \: \frac{4 }{5}\\ = \frac{2 \: \times \: 4}{7 \: \times \: 5} \)= \( \frac{8}{35}\)
ii. \(\scriptsize 3 \normalsize \frac{5 }{17}\: \times \: \scriptsize 2 \normalsize \frac{5 }{6} \: \times \: \scriptsize 1 \normalsize \frac{4}{8}\)
Solution
= \(\frac{51 \: + \: 5 }{17}\: \times \: \frac{12\:+\:5}{6} \: \times \: \frac{8\:+\:4}{8}\\ = \frac{56 }{17}\: \times \: \frac{17}{6} \: \times \: \frac{12}{8} \\ = \scriptsize 7 \: \times \: 2 \\ = \scriptsize 14 \)
Division of Fractions:
In whole numbers, if we say 9 divided by 4.
It means we write 9 ÷ 4 or 9/4
Similarly, 7 divided by 2/3 means 7 ÷ 2/3
Or \( \frac{7}{\frac{2}{3}} \)
To make the denominator equal to 1, multiply both the numerator and denominator by 3/2
i.e \( \frac{7 \: \times \: \frac{3}{2}}{\frac{2}{3} \: \times \: \frac{3}{2}} \\ = \frac{7 \: \times \: \frac{3}{2}}{1} \)
= \(\scriptsize 7 \: \times \: \normalsize \frac{3}{2} \)
Therefore, \(\scriptsize = 7 \: \div \: \normalsize \frac{2}{3} \\ \scriptsize = 7 \: \times \: \normalsize \frac{3}{2} \)
Notice that the sign \( \scriptsize \div\) (division) changes to \( \scriptsize \times\) (multiplication) and 2/3 is inverted (i.e. turned upside down) to 3/2.
Thus, 3/2 is called the inverse or the reciprocal of 2/3.
Hence, to divide by a fraction, simply multiply by its inverse (or reciprocal).
Worked Example 8.2.3:
Solve:
i. \(\frac{3}{7}\: \div \: \frac{2}{5} \)
ii. \(\scriptsize 3 \normalsize \frac{2 }{3}\: \div \: \scriptsize 4 \normalsize \frac{3}{9} \)
iii. \(\frac{15}{20} \scriptsize \: \div \: 5 \)
i. \(\frac{3}{7}\: \div \: \frac{2}{5} \)
Solution
⇒ \(\frac{3}{7}\: \div \: \frac{2}{5} \\ = \frac{3}{7}\: \times \: \frac{5}{2}\)
Did you notice that the sign changed to \( \scriptsize \times\) and \(\frac{2}{5}\) changed to \(\frac{5}{2}\)
We then Multiply
\(\frac{3 \: \times \: 5}{7\: \times \: 2}\\ = \frac{15}{14}\\ = \scriptsize 1 \normalsize \frac{1 }{14}\)ii. \(\scriptsize 3 \normalsize \frac{2 }{3}\: \div \: \scriptsize 4 \normalsize \frac{3}{9} \)
Solution
First, change these mixed fractions to importer fractions.
= \(\frac{11}{3}\: \div \: \frac{39}{3} \)
= \(\frac{11}{3}\: \times \: \frac{3}{39} \\ = \frac{11}{39} \)
iii. \(\frac{15}{20} \scriptsize \: \div \: 5 \)
Solution
This example illustrates how to divide a fraction by a whole number
\(\frac{15}{20} \scriptsize \: \div \: 5 \: means \: \normalsize \frac{15}{20}\scriptsize \: \div \: \normalsize \frac{5}{1}\)Thus, \(\frac{15}{20} \scriptsize \: \div \: \normalsize \frac{5}{1} \\ = \frac{15}{20} \scriptsize \: \times \: \normalsize \frac{1}{5} \\ = \frac{3 \: \times \: 1}{20 \: \times \: 1}\\ = \frac{3}{20}\)