JSS1: MATHEMATICS - 1ST TERM
-
Whole Numbers I | Week 13 Topics|1 Quiz
-
Whole Numbers II | Week 21 Topic|1 Quiz
-
Counting in Base Two | Week 34 Topics|1 Quiz
-
Arithmetic Operations | Week 43 Topics|1 Quiz
-
Lowest Common Multiple (LCM) | Week 52 Topics|1 Quiz
-
Highest Common Factor | Week 61 Topic|1 Quiz
-
Fraction | Week 77 Topics|1 Quiz
-
Basic Operations with Fractions I | Week 83 Topics|1 Quiz
-
Basic Operations with Fractions II | Week 91 Topic|1 Quiz
-
Directed Numbers | Week 103 Topics|1 Quiz
-
Estimation and Approximation I | Week 113 Topics|1 Quiz
-
Estimation and Approximation II | Week 126 Topics|1 Quiz
Solving Problems Involving Mixed Operations with Fractions
Topic Content:
- Solving Problems Involving Mixed Operations with Fractions
Worked Example 8.3.1
Simplify the following fractions:
i. \( \frac{3\frac{1}{3} \: \div \: 2 \frac{1}{2}}{4\frac{2}{7}} \)
ii. \(\scriptsize 2 \normalsize \frac{4 }{5}\scriptsize \: \times \: 5 \normalsize \frac{6}{8} \scriptsize \: \div \: \scriptsize 5 \normalsize \frac{1}{9} \)
iii. \(\frac {1}{4} \scriptsize \; of \; \left ( \scriptsize2 \normalsize \frac{3 }{4 } \; \div\; \frac{2}{8} \right) + \scriptsize 1 \normalsize \frac{2 }{3 }\)
i. \( \frac{3\frac{1}{3} \: \div \: 2 \frac{1}{2}}{4\frac{2}{7}} \)
Solution
= \( \large \frac{\frac{10}{3} \: \div \: \frac{5}{2}}{ \frac{30}{7}} \)
= \( \large \frac{\frac{10}{3} \: \times \: \frac{2}{5}}{ \frac{30}{7}} \)
= \( \large \frac{\frac{20}{15}}{ \frac{30}{7}} \)
= \( \large \frac{\frac{4}{3}}{ \frac{30}{7}} \)
= \(\frac{4}{3}\: \div \: \frac{30}{7} \)
= \(\frac{4}{3}\: \times \: \frac{7}{30} \)
= \(\frac{28}{90} \)
= \(\frac{14}{45}\)
ii. \(\scriptsize 2 \normalsize \frac{4 }{5}\scriptsize \: \times \: 5 \normalsize \frac{6}{8} \scriptsize \: \div \: \scriptsize 5 \normalsize \frac{1}{9} \)
Solution
= \(\frac{14 }{5} \; \times \; \frac{46}{8} \; \div \; \frac{46}{9} \)
= \(\frac{14 }{5} \; \times \; \frac{46}{8} \; \times \; \frac{9}{46} \)
= \(\frac{7 }{5} \; \times \; \frac{1}{4} \; \times \; \frac{9}{1} \)
= \(\frac{7 \; \times \; 1 \; \times \; 9 }{5 \; \times \; 4 \; \times \; 1} \)
= \( \frac{63}{20} \scriptsize = 3 \normalsize \frac {3}{20} \)
iii. \(\frac {1}{4} \scriptsize \; of \; \left ( \scriptsize2 \normalsize \frac{3 }{4 } \; \div\; \frac{2}{8} \right) + \scriptsize 1 \normalsize \frac{2 }{3 }\)
Solution
Let’s solve the bracket first – Remember BODMAS
\(\frac {1}{4} \scriptsize \: of \: \left ( \normalsize \frac{11 }{4 } \: \div\: \frac{2}{8} \right) + \scriptsize 1 \normalsize \frac{2 }{3 }\)= \(\frac {1}{4} \scriptsize \: of \: \left ( \normalsize \frac{11 }{4 } \: \times\: \frac{8}{2} \right) + \scriptsize 1 \normalsize \frac{2 }{3 }\)
Next is to solve “of” which means multiplication
= \(\frac {1}{4} \scriptsize \: \times \: \normalsize \frac{88 }{8 } + \scriptsize 1 \normalsize \frac{2 }{3 }\)
= \(\frac {1}{4} \scriptsize \: \times \: \scriptsize 11 + \normalsize \frac{5 }{3 } \)
= \(\frac {11}{4} \: + \: \frac{5 }{3} \)
= \(\frac {33 \:+ \:20}{12} = \frac{53 }{12} \)
= \(\scriptsize 4 \frac {5}{12} \)