JSS1: MATHEMATICS - 2ND TERM
-
Algebraic Processes | Week 14 Topics|1 Quiz
-
Simplification of Algebraic Expressions | Week 24 Topics|1 Quiz
-
Simplification of Algebraic Expressions 2 (Use of Brackets) | Week 34 Topics|1 Quiz
-
Simple Equations | Week 41 Topic|1 Quiz
-
Simple Equations II | Week 53 Topics|1 Quiz
-
Plane Shapes I | Week 65 Topics|2 Quizzes
-
Plane Shapes II | Week 77 Topics|1 Quiz
-
Plane Shapes III | Week 87 Topics|1 Quiz
-
Decimals and Percentages I | Week 92 Topics|1 Quiz
-
Decimals and Percentages II | Week 103 Topics|1 Quiz
Using Shapes to Represent Numbers
Topic Content:
- Open Sentences
Open Sentences:
AlgebraAlgebra is a branch of mathematics that substitutes letters for numbers. Algebra is about finding the unknown or putting real-life variables into equations and then solving them. More is the branch of mathematics in which letters and other general symbols are used to represent numbers and quantities in formulae and equations.
We say that \( \scriptsize 15 \: + \: \boxed{?} = 20 \) is an open sentence. We can put any value in the box but usually, only one value will make the open sentence true.
\( \scriptsize 15 \: + \: \boxed{?} = 20 \) will be true if 5 goes in the box
\( \scriptsize 15 \: + \: \boxed{5} = 20 \: is \: true\)Example 1.1.1:
Check the following mathematical statements carefully;
i. | \(\scriptsize 4 \: + \: 3 = 7 \) | True |
ii. | \(\scriptsize 8 \: – \: 5 = 3 \) | True |
iii. | \(\scriptsize 8\: – \: 5 = 10 \) | False |
iv. | \(\scriptsize 6 \: \times \: 5 = 20 \) | False |
Example 1.1.2:
Find the missing numbers that make the following open sentences true:
i. \( \;\;\scriptsize \boxed{?} + 7 = 14 \\ \rightarrow \scriptsize \boxed{7} + 7 = 14 \)
ii. \( \;\;\scriptsize 12 + \boxed{?} = 18 \\\rightarrow \scriptsize 12 + \boxed{6} = 18\)
iii. \(\;\; \scriptsize 14 + 7 = \boxed{?} \\ \rightarrow \scriptsize 14 + 7 = \boxed{21}\)
iv. \( \;\;\scriptsize \boxed{?} \: – \: 15 = 0 \\ \rightarrow \scriptsize \boxed{15} \: – \: 15 = 0 \)
v. \(\;\; \scriptsize 12 \: \times \: \boxed{?} = 36 \\ \rightarrow \scriptsize \scriptsize 12 \: \times \: \boxed{3} = 36\)
vi. \(\;\; \scriptsize \boxed{?} \: \times \: 5 = 40 \\ \rightarrow \scriptsize \boxed{8} \: \times \: 5 = 40 \)
vii. \( \;\; \scriptsize12 \: \div \: \boxed{?} = 3 \\ \rightarrow \scriptsize12 \; \div \: \boxed{4} = 3 \)
viii. \( \;\; \scriptsize (5 \: \times \: 8) \: – \: 5 = \boxed{?} \\ \rightarrow \scriptsize 40 \: – \: 5 = \boxed{35}\)
Remember BODMAS. We solve the values in the bracket first before we subtract.
PRACTICE FUN QUIZZES!!
