JSS1: MATHEMATICS - 2ND TERM
-
Algebraic Processes | Week 14 Topics|1 Quiz
-
Simplification of Algebraic Expressions | Week 24 Topics|1 Quiz
-
Simplification of Algebraic Expressions 2 (Use of Brackets) | Week 34 Topics|1 Quiz
-
Simple Equations | Week 41 Topic|1 Quiz
-
Simple Equations II | Week 53 Topics|1 Quiz
-
Plane Shapes I | Week 65 Topics|2 Quizzes
-
Plane Shapes II | Week 77 Topics|1 Quiz
-
Plane Shapes III | Week 87 Topics|1 Quiz
-
Decimals and Percentages I | Week 92 Topics|1 Quiz
-
Decimals and Percentages II | Week 103 Topics|1 Quiz
Area of a Triangle
Topic Content:
- Area of a Triangle
If you divide a rectangle into two equal parts by drawing any of its diagonals, each half of the rectangle is a right-angled triangle. See the diagram below. We can then use this to find the area of a triangle.

Area of a right-angled \( \scriptsize \Delta = \normalsize \frac {1}{2} \scriptsize \; \times \; base \; \times \; height \)
Example 8.5.1:
Calculate the area of the triangle with a base of 6 cm and a height of 4 cm
Solution:

Base (b) = 6 cm, Height (h) = 4 cm
Area of \( \scriptsize \Delta = \normalsize \frac {1}{2} \scriptsize \: \times \: base \: \times \: height \)
⇒ \( \frac {1}{2} \scriptsize \: \times \: 6 \: \times \: 4 \)
= \( \scriptsize 3 \: \times \: 4 \)
= \( \scriptsize 12\:cm \)
Example 8.5.2:
Given that the area of triangle ABC is 120 cm2 and its height BX is 16 cm. Find the length AC.

Solution
Let the base “AC” be “b“
Let the height “BX” be “h” = 16 cm
Area of \( \scriptsize \Delta ABC = \normalsize \frac {1}{2} \scriptsize \: \times \: base \: \times \: height \)
120 = \( \frac {1}{2} \scriptsize \: \times \: base \: \times \: 16 \)
120 = \( \frac {1}{2} \scriptsize \: \times \: b \: \times \: 16 \)
120 = \( \scriptsize 8b\)
Divide both sides by 8
= \( \frac{120}{8} = \frac{8b}{8} \)
⇒ \( \frac{120}{8} = \frac{\not{8}b}{\not{8}} \)
move the unknown b to the left-hand side
b = \( \frac{120}{8} \)
b = \( \scriptsize 15\:cm\)