Back to Course

JSS1: MATHEMATICS - 2ND TERM

0% Complete
0/0 Steps
  1. Algebraic Processes | Week 1
    4 Topics
    |
    1 Quiz
  2. Simplification of Algebraic Expressions | Week 2
    4 Topics
    |
    1 Quiz
  3. Simplification of Algebraic Expressions 2 (Use of Brackets) | Week 3
    4 Topics
    |
    1 Quiz
  4. Simple Equations | Week 4
    1 Topic
    |
    1 Quiz
  5. Simple Equations II | Week 5
    3 Topics
    |
    1 Quiz
  6. Plane Shapes I | Week 6
    5 Topics
    |
    2 Quizzes
  7. Plane Shapes II | Week 7
    7 Topics
    |
    1 Quiz
  8. Plane Shapes III | Week 8
    7 Topics
    |
    1 Quiz
  9. Decimals and Percentages I | Week 9
    2 Topics
    |
    1 Quiz
  10. Decimals and Percentages II | Week 10
    3 Topics
    |
    1 Quiz
  • excellence
  • Follow

Lesson Progress
0% Complete

Topic Content:

  • Area of a Triangle

If you divide a rectangle into two equal parts by drawing any of its diagonals, each half of the rectangle is a right-angled triangle. See the diagram below. We can then use this to find the area of a triangle.

Screenshot 2022 12 09 at 15.27.46

Area of a right-angled \( \scriptsize \Delta = \normalsize \frac {1}{2} \scriptsize \; \times \; base \; \times \; height \)

Example 8.5.1: 

Calculate the area of the triangle with a base of 6 cm and a height of 4 cm

Solution:

Screenshot 2022 12 09 at 15.35.12

Base (b)  =  6 cm, Height (h)  =  4 cm

Area of \( \scriptsize \Delta = \normalsize \frac {1}{2} \scriptsize \: \times \: base \: \times \: height \)

⇒ \( \frac {1}{2} \scriptsize \: \times \: 6 \: \times \: 4 \)

= \( \scriptsize 3 \: \times \: 4 \)

= \( \scriptsize 12\:cm \)

Example 8.5.2:

Given that the area of triangle ABC is 120 cm2 and its height BX is 16 cm. Find the length AC.

Screenshot 2022 12 09 at 15.44.18

Solution

Let the base “AC” be   “b

Let the height  “BX”  be  “h”  =   16 cm

Area of \( \scriptsize \Delta ABC = \normalsize \frac {1}{2} \scriptsize \: \times \: base \: \times \: height \)

120   =  \( \frac {1}{2} \scriptsize \: \times \: base \: \times \: 16 \)

120   =  \( \frac {1}{2} \scriptsize \: \times \: b \: \times \: 16 \)

120   =  \( \scriptsize 8b\)

Divide both sides by 8

= \( \frac{120}{8} = \frac{8b}{8} \)

⇒ \( \frac{120}{8} = \frac{\not{8}b}{\not{8}} \)

move the unknown b to the left-hand side

b = \( \frac{120}{8} \)

b = \( \scriptsize 15\:cm\)