Topic Content:
- Definition of Mathematical Equation
- True or False Sentences
What is a Mathematical Equation:
A mathematical equation is an expression containing at least one variable (an unknown value and an “equal sign” = ) with a mathematical expression on each side of it.
An equation can be as simple as; a = 0
e.g.
x + 2 = 0
2x – 8 = 0
x – 1 = 3
x + 5 = 15
True or False Sentences:
A sentence can be true or false in a simple equation.
Such as \(\scriptsize \boxed {?} + 6 = 10 \)
or \( \scriptsize x \: + \: 6 = 10\)
This may be true or false depending on the value of \(\scriptsize \boxed {?} \: or \: x\)
If the value of the unknown is 4, the sentence above is True
If the value of the unknown is 6, the sentence is false.
Also, if \( \scriptsize x \; or \; \boxed{?} = 4\)
then \( \scriptsize \boxed{?} + 10 = 15 \) is false since \( \scriptsize x \; or \; \boxed{?} = 4\)
\( \scriptsize 4 \; + \; 10 \neq 15\)\( \scriptsize \neq \) means “not equal to”
Note: A sentence which may be true or false is known as an open sentence.
Example 4.1.1:
Which of the following is true or false with the conditions given?
i. \(\scriptsize 3 \: \times \: \boxed {?} = 15 \) (when 5 replaces the box)
ii. \( \scriptsize 2a \: + \: 10 = 20 \) (when a = 12)
iii. \( \scriptsize a \: + \: 6 = 8 \) (when a = 2)
iv. \( \scriptsize 9x \: – \: 10 = 6 \) (when x = 3)
Solution
i. \(\scriptsize 3 \: \times \: \boxed {?} = 15 \) (when 5 replaces the box)
When \( \scriptsize \boxed {?} = 5\)
\(\scriptsize 3 \: \times \: \boxed {5} = 15 \)\( \scriptsize 3 \: \times \: 5 = 15 \) is true because both sides are equal.
ii. \( \scriptsize 2a \: + \: 10 = 20 \) (when a = 12)
\( \scriptsize \therefore 2 \: \times \: 12 \: + \: 10 = 20 \) \( \scriptsize 24 \: + \: 10 = 20 \) \( \scriptsize 34 \neq 20 \)\( \scriptsize \therefore 2a \: + \: 10 = 20 \) is false when a = 12
iii. \( \scriptsize a \: + \: 6 = 8 \) (when a = 2)
2 + 6 = 8 The sentence is true when a = 2
iv. \( \scriptsize 9x \: – \: 10 = 6 \) (when x = 3)
Let’s substitute x = 3 into \( \scriptsize 9x \: – \: 10 \)
\( \scriptsize 9x \: – \: 10 \) \( \scriptsize = (9 \: \times \: 3) \; – \: 10 \) \( \scriptsize = 27 \: – \: 10 \\ \scriptsize = 17 \) \( \scriptsize 9x \: – \: 10 \neq 6 \: \\ \scriptsize ….\: because \: 17 \neq 6 \)Hence 9x – 10 = 6 is false when x = 3
when x = 3, 9x – 10 = 17
Example 4.1.2:
Find the values of the unknown that will make the following sentences true.
i. \( \scriptsize a \: + \: 5 = 9 \)
ii. \( \scriptsize 3x = 30 \)
iii. \( \frac{y}{2} \scriptsize = 7 \)
iv. \( \scriptsize w \; – \: 8 = 6 \)
Solution
i. \( \scriptsize a \: + \: 5 = 9 \)
“a” means a number added to 5 to make 9.
By observation, 4 is the only number.
i.e
\( \scriptsize a \: + \: 5 = 9 \) \( \scriptsize 4 \: + \: 5 = 9 \)a = 4 is true
ii. \( \scriptsize 3x = 30 \)
x means the number you can multiply by 3 to obtain 30.
By inspection, 10 is the number because 3 x 10 = 30
By calculation;
\( \scriptsize 3x = 30 \)Divide both sides by 3
⇒ \( \frac{3x}{3} = \frac{30}{3} \\ = \frac{\not {3}x}{\not {3}} = \frac{30}{3} \\ \scriptsize x = \normalsize \frac{30}{3}\\ \scriptsize x = 10 \)
x = 10 is true
iii. \( \frac{y}{2} \scriptsize = 7 \)
y means a number that 2 can divide to obtain 7 with no remainder.
By inspection, the number is 14
\( \scriptsize y \: \div \: 2 = 7 \) \( \scriptsize 14 \: \div \: 2 = 7 \)y = 14 is true
iv. \( \scriptsize w \; – \: 8 = 6 \)
w means a number that when 8 is subtracted from we get 6. By inspection. 14 is the number.
\( \scriptsize w \; – \: 8 = 6 \) \( \scriptsize 14 \; – \: 8 = 6 \)w = 14 is true