Back to Course

JSS1: MATHEMATICS - 2ND TERM

0% Complete
0/0 Steps
  1. Algebraic Processes | Week 1
    4 Topics
    |
    1 Quiz
  2. Simplification of Algebraic Expressions | Week 2
    4 Topics
    |
    1 Quiz
  3. Simplification of Algebraic Expressions 2 (Use of Brackets) | Week 3
    4 Topics
    |
    1 Quiz
  4. Simple Equations | Week 4
    1 Topic
    |
    1 Quiz
  5. Simple Equations II | Week 5
    3 Topics
    |
    1 Quiz
  6. Plane Shapes I | Week 6
    5 Topics
    |
    2 Quizzes
  7. Plane Shapes II | Week 7
    7 Topics
    |
    1 Quiz
  8. Plane Shapes III | Week 8
    7 Topics
    |
    1 Quiz
  9. Decimals and Percentages I | Week 9
    2 Topics
    |
    1 Quiz
  10. Decimals and Percentages II | Week 10
    3 Topics
    |
    1 Quiz
  • excellence
  • Follow

Lesson Progress
0% Complete

Topic Content:

  • Substitution into Algebraic Expressions

In algebra, substitution means replacing letters with numbers. The operation sign is important when carrying out the substitution.

Example 3.3.1:

If a = 2, b = -5, c = 10, d = 3

Evaluate:

i. \( \scriptsize a \: + \: b \: + \: c \)
ii. \( \scriptsize c \: \div \: b \)
iii. \( \scriptsize a \: \times\: d \)
iv. \( \frac{d \: \times \: c}{a} \)
v. \( \frac{2b \: \times \: c}{10} \)

Solution

i. \( \scriptsize a \: + \: b \: + \: c \)

From the question the values given are a = 2, b = -5, c = 10

Substituting the values for a, b and c into the equation we get

= \( \scriptsize 2 \: + \: (-5) \: + \: 10 \)

Note:

\( \scriptsize +(-) \; = \; – \)

or

\(\scriptsize \; + \; \times \; \; – \; = \; – \)

= \( \scriptsize 2 \; – \: 5 \: + \: 10 \)

Using Bodmas rule, Addition comes before subtraction

Add 2 + 10 before subtracting 5

\( \scriptsize 2\: + \: 10 \; – \: 5 \)

= \( \scriptsize 12 \; – \: 5 \)

= \( \scriptsize 7\)

ii. \( \scriptsize c \: \div \: b \)

From the question, the values given are c = 10, b = -5

Substituting the values for c and b into the equation we get

\( \scriptsize 10 \: \div \: (-5) \)

= \( \frac {10}{-5}\)

= \( \scriptsize \: -2 \)

iii. \( \scriptsize a \: \times\: d \)

From the question, the values given are a = 2, d = 3

Substituting the values for a and d into the equation we get

\( \scriptsize 2 \: \times\: 3 = 6 \)

iv. \( \frac{d \: \times \: c}{a} \)

From the question, the values given are a = 2, c = 10, d = 3

Substituting the values for a, c and d into the equation we get

\( \frac{3 \: \times \: 10}{2} \\ \frac{30}{2} \\ = \scriptsize 15\)

v. \( \frac{2b \: \times \: c}{10} \)

From the question, the values given are b = -5, c = 10

Substituting the values for b and c into the equation we get

\( \frac{2(-5) \: \times \: 10}{10} \\ = \frac{-10 \: \times \: 10}{10} \\ = \frac{-100}{10} \\ = \scriptsize -10 \)

Note: When you divide a negative number by a positive number then the quotient is negative. When you divide a positive number by a negative number then the quotient is also negative. When you divide two negative numbers then the quotient is positive. The same principle rules hold for multiplication.

\(\scriptsize – \: \div \: + = \: – \) \( \scriptsize + \: \div \: – \: = \: – \) \( \scriptsize – \: \div \: – \: = \: + \) \( \scriptsize + \: \div \: + = \: + \)