JSS1: MATHEMATICS - 2ND TERM
-
Algebraic Processes | Week 14 Topics|1 Quiz
-
Simplification of Algebraic Expressions | Week 24 Topics|1 Quiz
-
Simplification of Algebraic Expressions 2 (Use of Brackets) | Week 34 Topics|1 Quiz
-
Simple Equations | Week 41 Topic|1 Quiz
-
Simple Equations II | Week 53 Topics|1 Quiz
-
Plane Shapes I | Week 65 Topics|2 Quizzes
-
Plane Shapes II | Week 77 Topics|1 Quiz
-
Plane Shapes III | Week 87 Topics|1 Quiz
-
Decimals and Percentages I | Week 92 Topics|1 Quiz
-
Decimals and Percentages II | Week 103 Topics|1 Quiz
Division of Algebraic Expressions
Topic Content:
- Division of Algebraic Expressions
Algebraic expressions can also be simplified by division.
Example 2.3.1:
Simplify the following algebraic expressions:
i. \( \scriptsize a \: \div \: b \)
ii. \( \scriptsize 2 \: \div \: 7 \)
iii. \( \scriptsize 2a \: \div \: 4a \)
iv. \( \scriptsize 15y \: \div \: 5 \)
Solution
i. \( \scriptsize a \: \div \: b \\ = \frac{a}{b} \)
ii. \( \scriptsize 2 \: \div \: 7 \\ = \normalsize \frac{2}{7} \)
iii. \( \scriptsize 2a \: \div \: 4a \\ = \normalsize \frac{2a}{4a} \\ = \normalsize \frac{2\not{a}}{4 \not{a}} \\ = \normalsize \frac{2}{4} \\ = \normalsize \frac{1}{2} \)
iv. \( \scriptsize 15y \: \div \: 5 \\ = \normalsize \frac{15y}{5} \\ = \scriptsize 3y \)
Example 2.3.2:
Solve the following:
i. \( \scriptsize 16ab \div 4ab \)
ii. \( \scriptsize 12xyz \div 4y \)
iii. \( \normalsize \frac{1}{4} \scriptsize \; of \; 24pq \)
iv. \( \scriptsize y \div xy \)
Solution
i. \( \scriptsize 16ab \div 4ab \\ = \normalsize \frac{16ab}{4ab}\\ = \normalsize \frac{16\not{a} \not{b}}{4\not{a}\not{b}} \\ = \normalsize \frac{16}{4} \\ = \scriptsize 4\)
ii. \( \scriptsize 12xyz \div 4y \\ = \normalsize \frac{12xyz}{4y} \\ = \normalsize \frac{12x \not{y}z}{4 \not{y}} \\ = \normalsize \frac{12xz}{4} \\ = \scriptsize 3xz \)
iii. \( \normalsize \frac{1}{4} \scriptsize \; of \; 24pq \\ =\normalsize \frac{1}{4}\scriptsize \; \times \; 24pq \\ = \normalsize \frac{24pq \; \times \; 1}{4} \\ = \normalsize \frac{24pq}{4} \\ = \scriptsize 6pq \)
iv. \( \scriptsize y \div xy \\ = \normalsize \frac{y}{xy}\\ = \normalsize \frac{\not{y} }{x \not{y}} \\ = \normalsize \frac{1}{x} \)