Topic Content:
- Collecting Like and Unlike Terms
- Multiplying with Letters
Collecting Like and Unlike Terms:
Like terms are terms whose variables (and their exponents such as the 2 in a2) are the same.
In other words, terms that are “like” each other. If they are not like terms, they are called, Unlike Terms.
Note: the coefficients (the numbers you multiply by, such as “5” in 5x) can be different.
Consider terms as 8y, 9y, 5y, and -2y
Here all four terms are like terms because y is the common variable.
Consider another example; \( \scriptsize 3xy^2,\: \normalsize \frac{1}{2} \scriptsize xy^2,\: 7xy^2 \: and \: \normalsize \frac{3}{4} \scriptsize xy^2 \)
Here also all four terms are like terms because xy2 is the common variable.
In the above example, 5xy is not a like term because xy is not raised to the power of 2.
Example 2.2.1:
Simplify:
(a) \( \scriptsize 4a \: + \: 3b \: + \: 2a \: + \: b \)
(b) \( \scriptsize 8x \: + \: 5y \: – \: 5x \: – \: 3y\: + \: 1 \)
Solution
(a) \( \scriptsize 4a \: + \: 3b \: + \: 2a \: + \: b \)
Collecting like “a” terms together and then the “b” terms to get
\( \scriptsize 4a \: + \: 2a \: + \: 3b \: + \: b \)6a + 4b
(b) \( \scriptsize 8x \: + \: 5y \: – \: 5x \: – \: 3y\: + \: 1 \)
Collecting the like term by arranging the terms by their variables.
\( \scriptsize 8x \: – \: 5x \: + \: 5y \: – \: 3y\: + \: 1 \)3x + 2y + 1
Example 2.2.2:
Simplify
(a) \( \scriptsize \: -5x \: + \: 9x \: + \: 2 \: – \: x \)
(b) \( \scriptsize \: -3xz \: + \: 7xy \: + \: 2xa \: – \: 9xz\: + \: 4xa \)
Solution
(a) \( \scriptsize \: -5x \: + \: 9x \: + \: 2 \: – \: x \)
Collect like terms
\( \scriptsize \: 9x \: – \: 5x \: – \: x \: + \: 2 \) \( \scriptsize \: 4x \: – \: x \: + \: 2 \) \( \scriptsize = 3x \: + \: 2 \)(b) \( \scriptsize \: -3xz \: + \: 7xy \: + \: 2xa \: – \: 9xz\: + \: 4xa \)
Collect like terms
\( \scriptsize \: -9xz \: – \: 3xz \: + \: 2xa \: + \: 4xa\: + \: 7xy\)= \( \scriptsize \: -12xz \: + \: 6xa \: + \: 7xy\)
or \( \scriptsize \: 6xa\: – \: 12xz \: + \: 7xy\)
Multiplying with Letters:
Note that, the multiplication of numbers is regarded as repeated addition.
e.g. 4 + 4 + 4 = 12
Note that 4 is repeated 3 times so we can also say
4 + 4 + 4 = 4 × 3 = 12
Similarly, in algebraAlgebra is a branch of mathematics that substitutes letters for numbers. Algebra is about finding the unknown or putting real-life variables into equations and then solving them. More, we can also say
\( \scriptsize x \: + \: x\: + \: x\: + \: x\: + \: x = 5x \)Also,
\( \scriptsize 5 \: \times \: x = 5x \) \( \scriptsize 7 \: \times \: p = 7p \) \( \scriptsize a \: \times \: b = ab \) \( \scriptsize x \: \times \: y \: \times \: 3 = 3xy \)Also,
\( \scriptsize 25ab = 25 \: \times \: a \: \times \: b \) \( \scriptsize 2xyz = 2 \: \times \: x \: \times \: y \: \times \: z \)