Example:
Find the mode, median and mean of the following data:
9, 7, 5, 0, 5, 0, 3 ,0, 15, 0, 2, 2, 0, 1, 3, 5, 12, 1, 3, 2, 4
Solution:
Rearrange the numbersÂ
0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 7, 9, 12, 15
It’s obvious that 0 appears most often
0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 7, 9, 12, 15
Mode = 0
The median is the 11th number
0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 7, 9, 12, 15
Median = 3
Mean = \( \frac{sum\:of\:the\:given\:values}{number\:of\:values} \)
Mean =
\( \frac{0\: + \: 0 \: + \: 0 \: + \: 0\: + \: 0\: + \:1\: + \: 1\: + \: 2\: + \:2\: + \: 2\: + \: 3\: + \: 3\: + \:3\: + \: 4\: + \:5\: + \: 5\: + \: 5\: + \: 7\: + \: 9\: + \: 12\: + \: 15}{21} \)Mean = \( \frac{79}{21} \)
Mean = 3.8
Example:
Grace did 10 tests in English dictation and her marks were as follows:
80, 50, 60, 75, 30, 65, 60, 40, 78, 70
(i) Find her modal mark
(ii) Find her median mark
(iii) Find her mean mark
Solution:Â
(i) To find her Modal mark: rearrange the marks
30, 40, 50, 60, 60, 65, 70, 75, 78, 80.
The mode is 60 (60 marks occur the most)
(ii) The Median
⇒ \( \scriptsize \underset{(4 \: values)}{30, 40, 50, 60} \; \underset{(middle \: numbers)}{60,65} \; \underset{(4 \: values)}{70, 75, 78, 80} \)
Median = \(\\ \frac{sum\:of\:the\:two\:middle\:numbers}{2} \\ = \frac{60 \: + \: 65}{2}\\ = \frac{125}{2} \\ = \scriptsize 62 \frac{1}{2} \: or \: 62.5 \)
(iii) The Mean
Mean = \( \frac{sum\:of\:the\:given\:values}{number\:of\:values} \)
\(=\frac{30 \:+ \:40 \:+ \:50 \: +\: 60 \:+\: 60 \:+ 65 \: + \: 70 \: + \: 75\: + \:78\: + \:80}{10} \)
Mean = \( \frac{608}{10} \\ = \scriptsize 60.8 \)
Responses