JSS2: MATHEMATICS - 1ST TERM
-
Properties of Whole Numbers I | Week 14 Topics|1 Quiz
-
Properties of Whole Numbers II | Week 24 Topics|1 Quiz
-
Properties of Whole Numbers III | Week 35 Topics|1 Quiz
-
Indices | Week 42 Topics|1 Quiz
-
Laws of Indices | Week 55 Topics|1 Quiz
-
Whole Numbers & Decimal Numbers | Week 64 Topics|1 Quiz
-
Standard Form | Week 73 Topics|1 Quiz
-
Significant Figures (S.F) | Week 84 Topics|1 Quiz
-
Fractions, Ratios, Proportions & Percentages I | Week 96 Topics|1 Quiz
-
Fractions, Ratios, Proportions & Percentages II | Week 104 Topics|1 Quiz
-
Fractions, Ratios, Proportions & Percentages III | Week 113 Topics|1 Quiz
-
Approximation & Estimation | Week 121 Topic|1 Quiz
Find Missing Values in Ratio
Topic Content:
- Find Missing Values in Ratio
To find the unknown term in a ratio:
1. Write the ratio as a fraction
2. Cross multiply to find the unknown value
Worked Example 10.2.1:
Find the missing numbers in the following:
a. 12 : x = 20 : 35
b. 4 : 9 = x : 99
Solution
a. 12 : x = 20 : 35
\( \frac{12}{x} = \frac{20}{35}\; \; \; \; \; \scriptsize \; (cross \; multiply) \\ \scriptsize 20x\: = \: 12 \: \times \:35 \\ \scriptsize x = \normalsize \frac{12 \; \times \; 35}{20} \\ \scriptsize x = 21\)b. 4 : 9 = x : 99
\( \frac{4}{9} = \frac{x}{99}\; \; \; \; \; \scriptsize \; (cross \; multiply) \\ \scriptsize 9x = 4 \: \times \: 99 \\ \scriptsize x = \normalsize \frac{4 \: \times \: 99}{9} \\ \scriptsize x = \normalsize \frac{4 \: \times \: 11}{1} \\ \scriptsize x = 44\)Worked Example 10.2.2:
Find the missing numbers in the following equivalent ratio:
a. \( \scriptsize 12 : \square = 20 : 35 \)
b. \( \scriptsize 4 : 9 = \square : 99 \)
c. \( \scriptsize 3 : 4 =21 : \square \)
Solution
a. \( \scriptsize 12 : \square = 20 : 35 \)
\( \frac{12}{\square} = \frac{20}{35} \\ \frac{12}{\square} = \frac{4}{7}\scriptsize \; \; \; \; \; (cross \: multiply) \\ \scriptsize 4 \: \times \: \square = 12 \: \times \: 7 \\ \scriptsize \square = \normalsize \frac{12 \: \times \: 7}{4} \\ \scriptsize \square = \normalsize \frac{84}{4} \\ \scriptsize \square = 21\)Answer: \( \scriptsize 12 : 21 = 20 : 35 \)
b. \( \scriptsize 4 : 9 = \square : 99 \)
\( \frac{4}{9} = \frac{\square}{99} \; \; \; \; \; \scriptsize \; (cross \; multiply) \\ \scriptsize 9 \: \times \: \square = 99 \: \times \: 4 \\ \scriptsize \square = \normalsize \frac{99 \: \times \: 4}{9} \\ \scriptsize \square = 11 \: \times \: 4 \\ \scriptsize \square = 44\)Answer: \( \scriptsize 4 : 9 = 44 : 99 \)
c. \( \scriptsize 3 : 4 = 21 : \square \)
\( \frac{3}{4} = \frac{21}{\square} \; \; \; \; \; \scriptsize \; (cross \: multiply) \\ \scriptsize 3\: \times \: \square = 21 \: \times \: 4 \\ \scriptsize \square = \normalsize \frac{21 \: \times \: 4}{3} \\ \scriptsize \square =7 \: \times \: 4 \\ \scriptsize \square = 28\)Answer: \( \scriptsize 3 : 4 = 21 : 28\)
Worked Example 10.2.3:
In a car park, there are 30 white cars and 20 blue cars.
a. What is the ratio of the white car to the blue car?
b. What is the ratio of the blue car to the white car?
Solution
a. Number of white cars = 30
Number of blue cars = 20
Ratio of white cars to blue cars:
= White car : blue car
= 30 : 20
= 3 : 2
b. Ratio of blue cars to white cars:
= Number of blue cars : Number of white cars
= 20 : 30
= 2 : 3
Evaluation Question:
1. In a certain class of 80 pupils, 50 are boys. What is the ratio of
a. girls to boys
b. boys to girls
2. In a certain supermarket, a tin of milk costs ₦70 and a tin of chocolate costs ₦210. What is the ratio of the cost of a tin of milk to the cost of a tin of chocolate?
View Answers