Back to Course

JSS2: MATHEMATICS - 1ST TERM

0% Complete
0/0 Steps
  1. Properties of Whole Numbers I | Week 1
    4 Topics
    |
    1 Quiz
  2. Properties of Whole Numbers II | Week 2
    4 Topics
    |
    1 Quiz
  3. Properties of Whole Numbers III | Week 3
    5 Topics
    |
    1 Quiz
  4. Indices | Week 4
    2 Topics
    |
    1 Quiz
  5. Laws of Indices | Week 5
    5 Topics
    |
    1 Quiz
  6. Whole Numbers & Decimal Numbers | Week 6
    4 Topics
    |
    1 Quiz
  7. Standard Form | Week 7
    3 Topics
    |
    1 Quiz
  8. Significant Figures (S.F) | Week 8
    4 Topics
    |
    1 Quiz
  9. Fractions, Ratios, Proportions & Percentages I | Week 9
    6 Topics
    |
    1 Quiz
  10. Fractions, Ratios, Proportions & Percentages II | Week 10
    4 Topics
    |
    1 Quiz
  11. Fractions, Ratios, Proportions & Percentages III | Week 11
    3 Topics
    |
    1 Quiz
  12. Approximation & Estimation | Week 12
    1 Topic
    |
    1 Quiz
  • excellence
  • Follow

Lesson Progress
0% Complete

Topic Content:

  • Law 1: Multiplication Law

\( \scriptsize a^m \: \times \: a^n = a^{m \:+ \:n} \)

This law applies only when numbers have the same base number.

Note: 23 and 24 have the same base number, 2, while 54 and 61 do not have the same base number because 5 and 6 are different.

e.g.

23 × 24   =  23+4   =  27

23 × 34   =   2 × 33+4  ❌ (incorrect)

Worked Example 5.1.1 (Using the Multiplication Law):

Simplify the following 

a. 25 × 24

b. c5  × c4

c. a2 × a7

d. 52 × 53 × 54

e. 72 × 72 × 73

Solution

a. 25 × 24   

= \( \scriptsize 2^{5\:+\:4} \)

= 29

(same base ‘2’)

b. c5 × c4    

=  \( \scriptsize c^{5\:+\:4} \)

=  c9

(same base ‘c’)

c. a2 × a7    

=  \( \scriptsize a^{2\:+\:7} \)

=  a9

(same base ‘a’)

d. 52 × 53 × 54 

=  \( \scriptsize 5^{2\:+\:3\:+\:4} \)

=  59

(same base ‘5’)

e. 72 × 72 × 73   

=  \( \scriptsize 7^{2\:+\:2\:+\:3} \)

= \( \scriptsize 7^{7} \)

(same base ‘7’)

Worked Example 5.1.2

Simplify the following by expanding the terms

a. 25 × 24

b. 52 × 53 × 54

c. c5 × c4

d. a2 × a7

e. 72 × 72 × 73

Solution

a. 25 × 24   

= (2 × 2 × 2 × 2 × 2)  × (2 × 2 × 2 × 2)  

=  29

b. 52 × 53 × 54

= (5 × 5) × (5 × 5 × 5 ) × (5 × 5 × 5 × 5)

=  59

c. c5 × c

= (c × c × c × c × c) × (c × c × c × c)

=  c9

d. a2 × a 

= (a × a) × (a × a × a × a × a × a × a)

=  a9

e. 72 × 72 × 7

= (7 × 7) × (7 × 7) × (7 × 7 × 7)

= 7 × 7 × 7 × 7 × 7 × 7 × 7 

= \( \scriptsize 7^{7} \)

Worked Example 5.1.3:

Simplify the following;

a. \( \scriptsize 2f^2 \: \times \: 3f^3 \)

b. \( \frac{1}{2} \scriptsize y^2 \: \times \: 4y^2 \: \times \: y^3 \)

c. \( \scriptsize 10k^2 \: \times \: 2k^3 \)

Solution

a. \( \scriptsize 2f^2 \: \times \: 3f^3 \\ \scriptsize = 2 \: \times \: 3 \: \times \: f^2 \: \times \: f^3 \\ \scriptsize = 6 \: \times \: f^{2\:+\:3} \\ \scriptsize= 6 \: \times \: f^5 \\ \scriptsize = 6f^5 \)

b. \( \frac{1}{2} \scriptsize y^2 \: \times \: 4y^2 \: \times \: y^3 \\ = \frac{1}{2} \scriptsize \: \times \: y^2 \: \times \: 4 \: \times \:y^2 \: \times \: y^3 \\ = \frac{1}{2} \scriptsize \: \times \: 4 \: \times \: y^2 \: \times \:y^2 \: \times \: y^3 \\ =\scriptsize 2 \: \times \: y^{2+2+3} \\ = \scriptsize 2 \: \times \: y^7 \\ \scriptsize = 2y^7\)

c. \( \scriptsize 10k^2 \: \times \: 2k^3 \\ \scriptsize = 10 \: \times \: 2 \: \times \: k^2 \: \times \: k^3 \\ \scriptsize = 20 \: \times \: k^{2+3} \\ \scriptsize = 20k^5 \)

d. \(\scriptsize y \: \times \: \frac{1}{2}y^2 \: \times \: y^3 \\ \scriptsize = \frac{1}{2} \: \times \: y \: \times \: y^2 \: \times \: y^3 \\ \scriptsize = \frac{1}{2} \: \times \: y^{1+2+3} \\ \scriptsize = \frac{1}{2}y^6\)

avataravatar