JSS2: MATHEMATICS - 1ST TERM
-
Properties of Whole Numbers I | Week 14 Topics|1 Quiz
-
Properties of Whole Numbers II | Week 24 Topics|1 Quiz
-
Properties of Whole Numbers III | Week 35 Topics|1 Quiz
-
Indices | Week 42 Topics|1 Quiz
-
Laws of Indices | Week 55 Topics|1 Quiz
-
Whole Numbers & Decimal Numbers | Week 64 Topics|1 Quiz
-
Standard Form | Week 73 Topics|1 Quiz
-
Significant Figures (S.F) | Week 84 Topics|1 Quiz
-
Fractions, Ratios, Proportions & Percentages I | Week 96 Topics|1 Quiz
-
Fractions, Ratios, Proportions & Percentages II | Week 104 Topics|1 Quiz
-
Fractions, Ratios, Proportions & Percentages III | Week 113 Topics|1 Quiz
-
Approximation & Estimation | Week 121 Topic|1 Quiz
Law 1: Multiplication Law
Topic Content:
- Law 1: Multiplication Law
\( \scriptsize a^m \: \times \: a^n = a^{m \:+ \:n} \)
This law applies only when numbers have the same base number.
Note: 23 and 24 have the same base number, 2, while 54 and 61 do not have the same base number because 5 and 6 are different.
e.g.
23 × 24 = 23+4 = 27 ✅
23 × 34 = 2 × 33+4 ❌ (incorrect)
Worked Example 5.1.1 (Using the Multiplication Law):
Simplify the following
a. 25 × 24
b. c5 × c4
c. a2 × a7
d. 52 × 53 × 54
e. 72 × 72 × 73
Solution
a. 25 × 24
= \( \scriptsize 2^{5\:+\:4} \)
= 29
(same base ‘2’)
b. c5 × c4
= \( \scriptsize c^{5\:+\:4} \)
= c9
(same base ‘c’)
c. a2 × a7
= \( \scriptsize a^{2\:+\:7} \)
= a9
(same base ‘a’)
d. 52 × 53 × 54
= \( \scriptsize 5^{2\:+\:3\:+\:4} \)
= 59
(same base ‘5’)
e. 72 × 72 × 73
= \( \scriptsize 7^{2\:+\:2\:+\:3} \)
= \( \scriptsize 7^{7} \)
(same base ‘7’)
Worked Example 5.1.2
Simplify the following by expanding the terms
a. 25 × 24
b. 52 × 53 × 54
c. c5 × c4
d. a2 × a7
e. 72 × 72 × 73
Solution
a. 25 × 24
= (2 × 2 × 2 × 2 × 2) × (2 × 2 × 2 × 2)
= 29
b. 52 × 53 × 54
= (5 × 5) × (5 × 5 × 5 ) × (5 × 5 × 5 × 5)
= 59
c. c5 × c4
= (c × c × c × c × c) × (c × c × c × c)
= c9
d. a2 × a7
= (a × a) × (a × a × a × a × a × a × a)
= a9
e. 72 × 72 × 73
= (7 × 7) × (7 × 7) × (7 × 7 × 7)
= 7 × 7 × 7 × 7 × 7 × 7 × 7
= \( \scriptsize 7^{7} \)
Worked Example 5.1.3:
Simplify the following;
a. \( \scriptsize 2f^2 \: \times \: 3f^3 \)
b. \( \frac{1}{2} \scriptsize y^2 \: \times \: 4y^2 \: \times \: y^3 \)
c. \( \scriptsize 10k^2 \: \times \: 2k^3 \)
Solution
a. \( \scriptsize 2f^2 \: \times \: 3f^3 \\ \scriptsize = 2 \: \times \: 3 \: \times \: f^2 \: \times \: f^3 \\ \scriptsize = 6 \: \times \: f^{2\:+\:3} \\ \scriptsize= 6 \: \times \: f^5 \\ \scriptsize = 6f^5 \)
b. \( \frac{1}{2} \scriptsize y^2 \: \times \: 4y^2 \: \times \: y^3 \\ = \frac{1}{2} \scriptsize \: \times \: y^2 \: \times \: 4 \: \times \:y^2 \: \times \: y^3 \\ = \frac{1}{2} \scriptsize \: \times \: 4 \: \times \: y^2 \: \times \:y^2 \: \times \: y^3 \\ =\scriptsize 2 \: \times \: y^{2+2+3} \\ = \scriptsize 2 \: \times \: y^7 \\ \scriptsize = 2y^7\)
c. \( \scriptsize 10k^2 \: \times \: 2k^3 \\ \scriptsize = 10 \: \times \: 2 \: \times \: k^2 \: \times \: k^3 \\ \scriptsize = 20 \: \times \: k^{2+3} \\ \scriptsize = 20k^5 \)
d. \(\scriptsize y \: \times \: \frac{1}{2}y^2 \: \times \: y^3 \\ \scriptsize = \frac{1}{2} \: \times \: y \: \times \: y^2 \: \times \: y^3 \\ \scriptsize = \frac{1}{2} \: \times \: y^{1+2+3} \\ \scriptsize = \frac{1}{2}y^6\)