Topic Content:
- Law 2: Division Law
\( \scriptsize a^m \div a^n = a^{m \: – \: n} \)
Similar to the Multiplication Law, the Division Law applies only when we have numbers with the same base numbers.
e.g.
27 ÷ 22
= 27-2
= 25
By expansion:
= \(\scriptsize 2^7 \: \div \:2^2 \\= \frac{2^7}{2^2} \\ = \frac{2 \: \times \: 2 \: \times \: 2\: \times \: 2\: \times \: 2\: \times \: 2\: \times \: 2}{2 \: \times \: 2}\\ = \frac{2 \: \times \: 2 \: \times \: 2\: \times \: 2\: \times \: 2\: \times \: \not{2}\: \times \: \not{2}}{\not{2}\: \times \: \not{2}}\\ \scriptsize = 2^5\)
Worked Example 5.2.1:
Simplify the following by expansion
a. 76 ÷ 72
b. m9 ÷ m4
c. x7 ÷ x4
d. h10 ÷ h4
e. 1312 ÷139
f. 18h5 ÷ 9h4
g. 3x2 ÷ 21x7
Solution
a. \(\scriptsize 7^6 \: \div \:7^2 \\= \frac{7^6}{7^2} \\ = \frac{7 \: \times \: 7 \: \times \: 7\: \times \: 7\: \times \: \not{7}\: \times \: \not{7}}{\not{7} \: \times \: \not{7}}\\ \scriptsize = 7^4\)
b. \(\scriptsize m^9 \: \div \:m^4 \\= \frac{m^9}{m^4} \\ =\scriptsize \frac{m \: \times \: m \: \times \: m\: \times \: m\: \times \: m\: \times \: \not{m}\: \times \: \not{m}\: \times \: \not{m}\: \times \: \not{m}}{\not{m} \: \times \: \not{m}\: \times \: \not{m}\: \times \: \not{m}}\\ \scriptsize = m^5\)
c. \(\scriptsize x^7 \: \div \:x^4 \\= \frac{x^7}{x^4} \\ = \frac{x \: \times \: x \: \times \: x\; \times \: \not{x}\: \times \:\not{ x}\: \times \: \not{x}\: \times \: \not{x}}{\not{x} \: \times \: \not{x}\: \times \: \not{x}\: \times \: \not{x}}\\ \scriptsize = x^3\)
d. \(\scriptsize h^{10} \: \div \:h^4 \\= \frac{h^{10}}{h^4} \\ = \frac{h \: \times \: h \: \times \: h \: \times \: h \: \times \: h \: \times \:h\: \times \: \not{h} \: \times \:\not{ h}\: \times \: \not{h}\: \times \: \not{h}}{\not{h} \: \times \: \not{h}\: \times \: \not{h}\: \times \: \not{h}}\\ \scriptsize = h^6\)
e. \(\scriptsize 13^{12} \: \div \:13^9 \\= \frac{13^{12}}{13^9} \\ = \frac{13 \: \times \: 13 \: \times \: 13 \: \times \: \not{13}\\ \: \times \: \not{13} \: \times \:\not{13} \: \times \: \not{13} \: \times \: \not{13}\\\: \times \: \not{13}\: \times \: \not{13} \: \times \: \not{13} \: \times \: \not{13}}{\not{13} \: \times \: \not{13}\: \times \: \not{13}\: \times \: \not{13}\\ \: \times \: \not{13} \: \times \: \not{13}\: \times \: \not{13}\: \times \: \not{13} \: \times \: \not{13}}\\ \scriptsize = 13^3\)
f. \(\scriptsize 18 h^{5} \: \div \: 9 h^4 \\= \frac{18h^{5}}{9h^4} \\ = \frac{18 \: \times \: h \: \times \: \not{h} \: \times \: \not{h} \: \times \: \not{h} \: \times \: \not{h} }{9 \: \times \: \not{h} \: \times \: \not{h}\: \times \: \not{h}\: \times \: \not{h}}\\ \scriptsize = 2h\)
g. \( \scriptsize 3x^2 \: \div \: 21x^7 \\ = \frac{3x^2}{21x^7} \\ = \frac{3 \: \times \: \not{x} \: \times \: \not{x}}{21 \: \times \: x \: \times \: x \: \times \: x \: \times \: x \: \times \: x\: \times \: \not{x} \: \times \: \not{x}} \\ = \frac{1}{7x^5} \)
Example 2
Simplify the following by the law of indices
a. 76 ÷ 72
b. m9 ÷ m
c. x7 ÷ x4
d. h10 ÷ h4
e. 1312 ÷ 139
f. 18h5 ÷ 9h4
g. 3x2 ÷ 21x7
Solution
a. 76 ÷ 72
= 76-2
= 74
same base
b. m9 ÷ m4
= m9-4
= m5
same base
c. x7 ÷ x4
= x7-4
= x3
same base
d. h10 ÷ h4
= h10-4
= h6
same base
e. 1312 ÷ 139
= 1312-9
= 133
same base
f. 18h5 ÷ 9h4
\(= \frac{18h^8}{9h^4}\\ = \scriptsize 2h^{5\:-\:4}\\ = \scriptsize 2h^1 \\= \scriptsize 2h \)g. 3x2 ÷ 21x7
= \( \frac{3}{21} \scriptsize x^2 \: \div \: x^7 \\= \frac{3}{21} \scriptsize x^{2 \: -\: 7}\\ = \frac{1}{7} \scriptsize x^{-5} \)