Topic Content:
- Law 3: Negative Indices (Powers)
This law applies when the power is negative.
\(\scriptsize a^{-n} = \normalsize \frac{1}{a^n}\)
In other words, an index number with a negative power is equal to the inverse of its index number with positive power.
\(\scriptsize 3^{-3}= \normalsize \frac{1}{3^{3}}\) \(\scriptsize 2^{-4}= \normalsize \frac{1}{2^{4}}\)Worked Example 5.3.1:
Simplify the following:
a. \( \scriptsize 2^4 \: \div \: 2^8 \)
b. y2 ÷ y6
c. x5 ÷ x7
Solution
a. \( \scriptsize 2^4 \: \div \: 2^8 \\= \frac{\not{2} \: \times \: \not{2} \: \times \: \not{2}\: \times \: \not{2}}{\not{2} \: \times \: \not{2} \: \times \: \not{2}\: \times \: \not{2}\: \times \: 2\: \times \: 2\: \times \: 2 \: \times \: 2} \\= \frac{1}{2^4}\)
Alternatively, using the law:
\( \scriptsize 2^4 \: \div \: 2^8 \\ \scriptsize = 2^{4 \: – \: 8} \\ \scriptsize = 2^{-4} \)= \( \frac{1}{2^4}\)
b. \( \scriptsize y^2 \: \div \: y^6 \\ = \frac{\not{y} \: \times \: \not{y}}{\not{y}\: \times \: \not{y} \: \times \: y \: \times \: y \: \times \: y\: \times \: y} \\= \frac{1}{y^4}\)
Alternatively, using the law:
\( \scriptsize y^2 \: \div \: y^6 \\ \scriptsize = y^{2 \: – \: 6} \\ \scriptsize = y^{-4} \)= \( \frac{1}{y^4}\)
c. \( \scriptsize x^5 \: \div \: x^7 \\= \frac{ \not{x} \: \times \: \not{x}\: \times \: \not{x} \: \times \: \not{x} \: \times \: \not{x}}{\not{x} \: \times \: \not{x} \: \times \: \not{x}\: \times \: \not{x}\: \times \: \not{x}\: \times \: x\: \times \: x } \\= \frac{1}{x^2}\)
Alternatively, using the law:
\( \scriptsize x^5 \: \div \: x^7 \\ \scriptsize = x^{5 \: – \: 7} \\ \scriptsize = x^{-2} \)= \( \frac{1}{x^2}\)
Worked Example 5.3.2:
Simplify the following;
a. \( \scriptsize 5^{-2} \)
b. \( \scriptsize 3^{-5} \)
c. \( \left(\frac{2}{3} \right)^{-1} \)
d. \( \left(\frac{4}{5} \right)^{-2} \)
e. \( \scriptsize 2^5 \: \times \: 2^{-3} \: \times \: 2^{-8} \)
f. \( \scriptsize \left( \scriptsize 5y \right)^{-2} \)
g. \( \scriptsize 5y^{-2} \)
h. \( \scriptsize 5^{-2}y \)
Solution
a. \( \scriptsize 5^{-2} \) (negative index)
= \( \frac{1}{5^2} \) (positive index)
b. \( \scriptsize 3^{-5} \) (negative index)
= \( \frac{1}{3^5} \) (positive index)
c. \( \left(\frac{2}{3} \right)^{-1} \) (negative index)
= \(\frac{1}{\frac{2}{3}} \)
= \( \scriptsize 1 \: \div \: \frac{2}{3} \)
= \( \scriptsize 1 \: \times\: \frac{3}{2} \)
= \( \frac{3}{2} \) (positive index)
d. \( \left(\frac{4}{5} \right)^{-2} \) (negative index)
= \(\frac{1}{\left(\frac{4}{5}\right)^2} \)
= \( \scriptsize 1 \: \div \: \left(\frac{4}{5}\right)^2 \)
= \( \scriptsize 1 \: \times\: \left(\frac{5}{4}\right)^2 \)
= \( \left(\frac{5}{4}\right)^2 \) (positive index)
= \( \frac{25}{16} \)
e. \( \scriptsize 2^5 \: \times \: 2^{-3} \: \times \: 2^{-8} \) (same base)
= \( \scriptsize 2^{5 +(-3)+(-8)}\)
= \( \scriptsize 2^{5 -3-8}\)
= \( \scriptsize 2^{5 -11}\)
= \( \scriptsize 2^{-6}\)
=\(\frac{1}{2^6}\)
f. \( \scriptsize \left( \scriptsize 5y \right)^{-2} \)
Note: 5y is enclosed in the bracket. The index affects both 5 and y.
=\( \frac{1}{(5y)^2} \)
= \( \frac{1}{5y \: \times \: 5y} \)
= \( \frac{1}{25y^2} \)
g. \( \scriptsize \scriptsize 5y^{-2} \)
Note: The negative index affects only y in this case
= \(\scriptsize 5 \: \times \: y^{-2} \)
= \(\scriptsize 5 \: \times \: \normalsize \frac{1}{y^2} \)
= \( \frac{5}{y^2} \)
h. \( \scriptsize \scriptsize 5^{-2}y \)
Note: The negative index affects only 5 in this case
= \(\scriptsize 5^{-2} \: \times \: y\)
= \( \frac{1}{5^2} \scriptsize \: \times \: y \)
= \( \frac{1}{25} \scriptsize \: \times \: y \)
= \( \frac{y}{25} \)