JSS2: MATHEMATICS - 1ST TERM
-
Properties of Whole Numbers I | Week 14 Topics|1 Quiz
-
Properties of Whole Numbers II | Week 24 Topics|1 Quiz
-
Properties of Whole Numbers III | Week 35 Topics|1 Quiz
-
Indices | Week 42 Topics|1 Quiz
-
Laws of Indices | Week 55 Topics|1 Quiz
-
Whole Numbers & Decimal Numbers | Week 64 Topics|1 Quiz
-
Standard Form | Week 73 Topics|1 Quiz
-
Significant Figures (S.F) | Week 84 Topics|1 Quiz
-
Fractions, Ratios, Proportions & Percentages I | Week 96 Topics|1 Quiz
-
Fractions, Ratios, Proportions & Percentages II | Week 104 Topics|1 Quiz
-
Fractions, Ratios, Proportions & Percentages III | Week 113 Topics|1 Quiz
-
Approximation & Estimation | Week 121 Topic|1 Quiz
Square Root of Numbers
Topic Content:
- Square Root of Numbers
Given the square of these numbers find the square root:
a. 4 × 4 = 16, The square root of 16 is written as \(\scriptsize \sqrt{16}= 4\)
b. 5 × 5 = 25, The square root of 25, \(\scriptsize \sqrt{25}= 5\)
c. 3 × 3 = 9, The square root of 9, \(\scriptsize \sqrt{9}= 3\)
This implies that the square root of a given number is that number that multiplies itself to give the given number.
Similarly,
d. -4 × -4 = 16, The square root of \(\scriptsize \sqrt{16}= 4\)
e. -5 × -5 = 25, The square root of 25, \(\scriptsize \sqrt{25}= 5\)
In general, a number has two square roots: one negative square root and one positive square root.
e.g. \(\scriptsize \sqrt{16} \\ \scriptsize = \sqrt{4 \: \times \: 4}\\ \scriptsize = \sqrt{-4 \: \times \: -4} \\ \scriptsize = \pm{4}\)
\(\scriptsize \sqrt{25} \\ \scriptsize = \sqrt{5 \: \times \: 5}\\ \scriptsize = \sqrt{-5 \: \times \: -5}\\ \scriptsize = \pm{5} \)Worked Example 2.2.1:
Find the square root of
a. 144
b. 81
c. 324
d. 900
Solution
a. Square root of 144 = \(\scriptsize \sqrt{144}\)
Step 1: Express 144 as product of prime factors.
Step 2:
144 = (2 × 2) × (2 × 2) × (3 × 3)
\(\scriptsize \sqrt{144}\) = 2 × 2 × 3
\(\scriptsize \sqrt{144}\) = 12
b. Square root of 81 = \(\scriptsize \sqrt{81}\)
Step 1:
81 = 3 × 3 × 3 × 3
Step 2:
\(\scriptsize \sqrt{81}\) = 3 × 3 = 9
c. Square root of 324 = \(\scriptsize \sqrt{324}\)
Step 1:
324 = 2 × 2 × 3 × 3 × 3 × 3
Step 2:
\(\scriptsize \sqrt{324}\) = 2 × 3 × 3 = 18
d. Square root of 900 = \(\scriptsize \sqrt{900}\)
Step 1:
Step 2:
\(\scriptsize \sqrt{900}\) = 2 × 3 × 5
= 30