JSS2: MATHEMATICS - 1ST TERM
-
Properties of Whole Numbers I | Week 14 Topics|1 Quiz
-
Properties of Whole Numbers II | Week 24 Topics|1 Quiz
-
Properties of Whole Numbers III | Week 35 Topics|1 Quiz
-
Indices | Week 42 Topics|1 Quiz
-
Laws of Indices | Week 55 Topics|1 Quiz
-
Whole Numbers & Decimal Numbers | Week 64 Topics|1 Quiz
-
Standard Form | Week 73 Topics|1 Quiz
-
Significant Figures (S.F) | Week 84 Topics|1 Quiz
-
Fractions, Ratios, Proportions & Percentages I | Week 96 Topics|1 Quiz
-
Fractions, Ratios, Proportions & Percentages II | Week 104 Topics|1 Quiz
-
Fractions, Ratios, Proportions & Percentages III | Week 113 Topics|1 Quiz
-
Approximation & Estimation | Week 121 Topic|1 Quiz
Multiplication & Division of Square Roots
Topic Content:
- Multiplication & Division of Square Roots
- Worked Examples For Equations Involving Multiplication
- Worked Examples For Equations Involving Division
1. For Equations Involving Multiplication:
i. Split the square roots if both numbers are perfect squares e.g.
\(\scriptsize \sqrt{4 \: \times \: 16} \\ \scriptsize = \sqrt{4} \: \times \: \sqrt{16} \\ \scriptsize = 2 \: \times \: 4 \\ \scriptsize = 8 \)ii. Multiply directly, if one or both numbers are not perfect squares e.g.
\(\scriptsize \sqrt{2 \: \times \: 50}\\ \scriptsize = \sqrt{100}\\ \scriptsize = 10\)This is because 2 and 50 are not perfect squares, but their product 100 is.
2. For Equations Involving Division:
i. Split the square roots, if both numbers are perfect squares e.g.
\(\sqrt{ \frac{144 }{81}}\\= \frac{\sqrt{144}}{\sqrt{81}} \\ = \frac{12}{9} \\ \ = \frac{4}{3} \\ \scriptsize = 1 \normalsize \frac{1}{3} \)ii. Divide directly if one or both numbers are not perfect squares e.g.
\(\scriptsize \sqrt{128 \: \div \: 2}\\ \scriptsize =\sqrt{64} \\ \scriptsize = 8 \)Worked Example 3.1.1:
Evaluate the following;
a. \(\scriptsize \sqrt{24 + 1}\)
b. \(\scriptsize \sqrt{50 \: – \: 25}\)
c. \(\scriptsize \sqrt{200 \: – \: 4}\)
d. \(\scriptsize \sqrt{10 + 20 + 30 + 50 \: – \: 10}\)
e. \(\scriptsize \sqrt{64 \: \times \: 81}\)
f. \(\sqrt{ \frac{400}{4}}\)
g. \(\scriptsize \sqrt{4 \: \times \: 6 \: \times \: 6}\)
h. \(\scriptsize \sqrt{ 9 \: \times \: 8 \: \div \: 2}\)
i. \(\scriptsize \sqrt{ 27 \: \times \: 3 \: \div \: 9}\)
Solution
a. \(\scriptsize \sqrt{24 \:+\:1} \\ \scriptsize = \sqrt{25}\\ \scriptsize = 5\)
b. \(\scriptsize \sqrt{50 \: – \: 25} \\ \scriptsize = \sqrt{25}\\ \scriptsize = 5\)
c. \(\scriptsize \sqrt{200 \: – \: 4} \\ \scriptsize = \sqrt{196} \\ \scriptsize = 14 \)
d. \(\scriptsize \sqrt{10\: + \: 20\: +\: 30 \:+ \: 50 \: – \: 10}\\ \scriptsize =\sqrt{110\: – \:10}\\ \scriptsize = \sqrt{100} \\ \scriptsize= 10 \)
e. \(\scriptsize \sqrt{64 \: \times \: 81} \\ \scriptsize = \sqrt{64} \: \times \sqrt{81} \\ \scriptsize = 8 \: \times \: 9 \\ \scriptsize = 72\)
f. \(\sqrt{ \frac{400}{4}}\\ \scriptsize = \sqrt{100} \\ \scriptsize = 10 \)
or
\(\sqrt{ \frac{400}{4}}\\ = \frac{\sqrt{400}}{\sqrt{4}}\\ = \frac{20}{2} \\ \scriptsize = 10\)g. \(\scriptsize \sqrt{4 \: \times \: 6 \: \times \: 6}\)
= \(\scriptsize \sqrt{4 \: \times \: 36}\\ \scriptsize = \sqrt{4} \: \times \: \sqrt{36} \)
= \( \scriptsize 2 \: \times \: 6 = 12 \)
h. \(\scriptsize \sqrt{ 9 \: \times \: 8 \: \div \: 2}\\ \scriptsize = \sqrt{9 \: \times \: 4} \)
= \(\scriptsize \sqrt{9} \: \times \: \sqrt{4}\)
= \( \scriptsize 3 \: \times \: 2 = 6 \)
i. In this case apply BODMAS (Do the division first)
\(\scriptsize \sqrt{ 27 \: \times \: 3 \: \div \: 9}\\ \scriptsize = \sqrt{ \normalsize \frac{27 \: \times \: 3 }{9}} \\ \scriptsize = \sqrt{3 \: \times \: 3} \) \( \scriptsize = \sqrt{9} = 3 \)