Topic Content:
- Meaning of Algebraic Fractions
- Equivalent Algebraic Fractions
What are Algebraic Fractions?
Algebraic fractions are factions that contain both letters and numbers e.g.
\( \frac{x}{5}, \frac{2y}{3}, \frac{3x^2}{5y}, \frac{a \: + \: b}{x \: – \: 2y}, \scriptsize \: etc \)Equivalent Algebraic Fractions:
Equivalent algebraic fractions can be obtained by multiplying or dividing both the numerator and denominator by the same quantity.
Example 4.1.1:
Copy and complete these equivalent fractions.
(a) \( \frac{3x}{7} = \frac{?}{21} \)
(b) \( \frac{1}{x} = \frac{3}{?} \)
(c) \( \frac{a}{b} = \frac{?}{11bx} \)
Solution
(a) \( \frac{3x}{7} = \frac{?}{21} \)
7 multiplied by what number will give you 21?
7 × ? = 21
7 × 3 = 21
Remember: Equivalent algebraic fractions can be obtained by multiplying or dividing both the numerator and denominator by the same quantity.
∴ \( \frac{3x}{7} = \frac{3x \: \times \: 3}{7 \: \times \: 3} = \frac{9x}{21} \)
∴ \( \normalsize \frac{3x}{7} \scriptsize \: is \: equivalent \: to \: \normalsize \frac{9x}{21} \)
(b) \( \frac{1}{x} = \frac{3}{?} \)
1 multiplied by what number will give you 3?
1 × ? = 3
1 × 3 = 3
∴ \( \frac{1}{x} = \frac{1 \: \times \: 3}{x \: \times \: 3} = \frac{3}{3x} \)
∴ \( \normalsize \frac{1}{x} \scriptsize \: is \: equivalent \: to \: \normalsize \frac{3}{3x} \)
(c) \( \frac{a}{b} = \frac{?}{11bx} \)
b multiplied by what will give 11bx?
b × ? = 11bx
b × 11x = 11bx
∴ \( \frac{a}{b} = \frac{a \: \times \: 11x}{b \: \times \: 11x} = \frac{11ax}{11bx} \)
∴ \( \normalsize \frac{a}{b} \scriptsize \: is \: equivalent \: to \: \normalsize \frac{11ax}{11bx} \)
Example 4.1.2:
Write any three equivalent fractions of these fractions
(a) \( \frac{2}{x}\)
(b) \( \frac{3a}{5}\)
Solution
Let’s multiply the numerators and denominators by 2, 3 and 4
(a)
i. \( \frac{2}{x} = \frac{2 \: \times \: 2}{x \: \times \: 2} = \frac{4}{2x} \)
ii. \( \frac{2}{x} = \frac{2 \: \times \: 3}{x \: \times \: 3} = \frac{6}{3x} \)
iii. \( \frac{2}{x} = \frac{2 \: \times \: 4}{x \: \times \: 4} = \frac{8}{4x} \)
(b)
i. \( \frac{3a}{5} = \frac{3a \: \times \: 2}{5 \: \times \: 2} = \frac{6a}{10} \)
ii. \( \frac{3a}{5} = \frac{3a \: \times \: 3}{5 \: \times \: 3} = \frac{9a}{15} \)
iii. \( \frac{3a}{5} = \frac{3a \: \times \: 4}{5 \: \times \: 4} = \frac{12}{20} \)
Evaluation Questions:
1. Write down 3 equivalent fractions of these fractions.
(a) \( \frac{5a}{3y}\)
(b) \( \frac{6x}{5}\)
(c) \( \frac{2a}{6y}\)
2. Find the missing number
(a) \( \frac{3b}{2} = \frac{?}{8a} \)
(b) \( \frac{10a}{1} = \frac{?}{4} \)
(c) \( \frac{?}{3a} = \frac{6x}{9ax} \)
(d) \( \frac{4x}{?} = \frac{32x}{8ax} \)
Answers
1 (a) \( \frac{10a}{6y}, \frac{15a}{9y}, \frac{20a}{12y} \)
(b) \( \frac{12x}{10}, \frac{18x}{15}, \frac{24x}{20} \)
(c) \( \frac{4a}{2y}, \frac{6a}{3y}, \frac{8a}{4y} \)
2 (a) 12ab
(b) 40a
(c) 2
(d) ax