JSS2: MATHEMATICS - 2ND TERM
-
Transactions in the Homes and Offices | Week 18 Topics|1 Quiz
-
Expansion and Factorization of Algebraic Expressions | Week 24 Topics|1 Quiz
-
Algebraic Expansion and Factorization of Algebraic Expression | Week 34 Topics|1 Quiz
-
Algebraic Fractions I | Week 44 Topics|1 Quiz
-
Addition and Subtraction of Algebraic Fractions | Week 52 Topics|1 Quiz
-
Solving Simple Equations | Week 64 Topics|1 Quiz
-
Linear Inequalities I | Week 74 Topics|1 Quiz
-
Linear Inequalities II | Week 82 Topics|1 Quiz
-
Quadrilaterals | Week 92 Topics|1 Quiz
-
Angles in a Polygon | Week 104 Topics|1 Quiz
-
The Cartesian Plane Co-ordinate System I | Week 113 Topics|1 Quiz
-
The Cartesian Plane Co-ordinate System II | Week 121 Topic|1 Quiz
Multiplication and Division of Algebraic Fractions
Topic Content:
- Multiplication and Division of Algebraic Fractions
(1) To multiply algebraic fractions, cancel common terms before multiplying out
(2) To divide an algebraic fraction, multiply by the inverse of the term after the division (÷) sign.
Example 4.3.1:
Simplify the following:
(a) \( \frac{8}{x} \: \times \: \frac{y}{3}\)
(b) \( \frac{x}{6} \: \times \: \frac{4}{x}\)
(c) \( \frac{5a}{7b} \: \times \: \frac{5b}{3a}\)
(d) \( \frac{c}{d} \: \div \: \frac{c}{a}\)
(e) \( \frac{9x}{5} \: \div \: \frac{3x}{10}\)
(f) \( \frac{z^3}{6xy} \: \div \: \frac{9}{2xy}\)
Solution
(a) \(\normalsize \frac{8}{x} \: \scriptsize \times \: \normalsize \frac{y}{3} \\ = \normalsize \frac{8 \: \times \: y}{x\: \times \: 3} \\ =\normalsize \frac{8y}{3x}\)
(b) \(\normalsize \frac{x}{6} \scriptsize \: \times \: \normalsize \frac{4}{x} \\ =\normalsize \frac{x\: \times \:4}{6\: \times \: x}\\ = \normalsize\frac{\not{x}\: \times \:4}{6\: \times \: \not{x}} \\ = \normalsize \frac{4}{6} \\ =\normalsize \frac{2}{3} \)
(c) \( \frac{5a}{7b} \: \times \: \frac{5b}{3a} \\ = \frac{5a \: \times \: 5b}{7b \: \times \: 3a} \\ = \frac{5 \: \times \: 5 \: \times \: \not{a} \: \times \: \not{b}}{7 \: \times \: 3 \: \times \: \not{a} \: \times \: \not{b}} \\ = \frac{5 \: \times \: 5}{7 \: \times \: 3} \\ = \frac{25}{71}\)
(d) \( \frac{c}{d} \: \div \: \frac{c}{a}\\ = \frac{c}{d} \: \times\: \frac{a}{c} \\ = \frac{c\: \times\: a}{d \: \times\: c} \\ = \frac{\not{c}\: \times\: a}{d \: \times\: \not{c}} \\ = \frac{a}{d}\)
(e) \( \frac{9x}{5} \: \div \: \frac{3x}{10} \\ =\frac{9x}{5} \: \times \: \frac{10}{3x} \\ = \frac{9x\: \times\:10}{5\: \times\: 3x} \\ = \frac{9\: \times\:10\: \times\: x}{5\: \times\: 3 \: \times\: x} \\ = \frac{\not{9}^{3}\: \times\:10\: \times\: \not{x}}{5\: \times\: \not{3} \: \times\: \not{x}} \\ = \frac{3 \: \times\: 10}{5} \\ = \scriptsize 3 \: \times\: 2 \\ = \scriptsize 6 \)
(f) \( \frac{z^3}{6xy} \: \div \: \frac{9}{2xy} \\ = \frac{z^3}{6xy} \: \times\: \frac{2xy}{9} \\ =\frac{z^3 \: \times \: 2xy}{6xy\: \times \: 9} \\ = \frac{z^3 \: \times \: 2 \: \times \: x \: \times \: y}{ 6\: \times \: x \: \times \: y \: \times \: 9} \\ = \frac{z^3 \: \times \: \not{2} \: \times \: \not{x} \: \times \: \not{y}}{ \not{6}^{3} \: \times \: \not{x} \: \times \: \not{y} \: \times \: 9} \\ = \frac{z^3}{3 \: \times \: 9} \\ = \frac{z^3}{27} \)
Evaluation
Simplify the following
(a) \( \frac{g}{7} \: \times \: \frac{14}{g^2}\)
(b) \( \frac{3}{x} \: \div \: \frac{6}{2x}\)
(c) \( \frac{x}{y} \: \div \: \frac{x}{y}\)
(d) \( \frac{t^2}{5a} \: \times \: \frac{3a}{t}\)
(e) \( \frac{4x}{5y} \: \times \: \frac{4y}{7}\)
(f) \( \frac{6x^2}{11y} \: \div \: \frac{18x}{33y^2}\)
Answer
(a) \( \frac{2}{g} \)
(b) 1
(c) 1
(d) \( \frac{3t}{5} \)
(e) \( \frac{16x}{35} \)
(f) \( \scriptsize xy\)