Back to Course

JSS2: MATHEMATICS - 2ND TERM

0% Complete
0/0 Steps
  1. Transactions in the Homes and Offices | Week 1
    8 Topics
    |
    1 Quiz
  2. Expansion and Factorization of Algebraic Expressions | Week 2
    4 Topics
    |
    1 Quiz
  3. Algebraic Expansion and Factorization of Algebraic Expression | Week 3
    4 Topics
    |
    1 Quiz
  4. Algebraic Fractions I | Week 4
    4 Topics
    |
    1 Quiz
  5. Addition and Subtraction of Algebraic Fractions | Week 5
    2 Topics
    |
    1 Quiz
  6. Solving Simple Equations | Week 6
    4 Topics
    |
    1 Quiz
  7. Linear Inequalities I | Week 7
    4 Topics
    |
    1 Quiz
  8. Linear Inequalities II | Week 8
    2 Topics
    |
    1 Quiz
  9. Quadrilaterals | Week 9
    2 Topics
    |
    1 Quiz
  10. Angles in a Polygon | Week 10
    4 Topics
    |
    1 Quiz
  11. The Cartesian Plane Co-ordinate System I | Week 11
    3 Topics
    |
    1 Quiz
  12. The Cartesian Plane Co-ordinate System II | Week 12
    1 Topic
    |
    1 Quiz
  • excellence
  • Follow

Lesson 4, Topic 3
In Progress

Multiplication and Division of Algebraic Fractions

Lesson Progress
0% Complete

Topic Content:

  • Multiplication and Division of Algebraic Fractions

(1) To multiply algebraic fractions, cancel common terms before multiplying out 

(2) To divide an algebraic fraction, multiply by the inverse of the term after the division (÷) sign.

Example 4.3.1:

Simplify the following:

(a) \( \frac{8}{x} \: \times \: \frac{y}{3}\)

(b) \( \frac{x}{6} \: \times \: \frac{4}{x}\)

(c) \( \frac{5a}{7b} \: \times \: \frac{5b}{3a}\)

(d) \( \frac{c}{d} \: \div \: \frac{c}{a}\)

(e) \( \frac{9x}{5} \: \div \: \frac{3x}{10}\)

(f) \( \frac{z^3}{6xy} \: \div \: \frac{9}{2xy}\)

Solution

(a) \(\normalsize \frac{8}{x} \: \scriptsize \times \: \normalsize \frac{y}{3} \\ = \normalsize \frac{8 \: \times \: y}{x\: \times \: 3} \\ =\normalsize \frac{8y}{3x}\) 

(b) \(\normalsize \frac{x}{6} \scriptsize \: \times \: \normalsize \frac{4}{x} \\ =\normalsize \frac{x\: \times \:4}{6\: \times \: x}\\ = \normalsize\frac{\not{x}\: \times \:4}{6\: \times \: \not{x}} \\ = \normalsize \frac{4}{6} \\ =\normalsize \frac{2}{3} \)

(c) \( \frac{5a}{7b} \: \times \: \frac{5b}{3a} \\ = \frac{5a \: \times \: 5b}{7b \: \times \: 3a} \\ = \frac{5 \: \times \: 5 \: \times \: \not{a} \: \times \: \not{b}}{7 \: \times \: 3 \: \times \: \not{a} \: \times \: \not{b}} \\ = \frac{5 \: \times \: 5}{7 \: \times \: 3} \\ = \frac{25}{71}\)

(d) \( \frac{c}{d} \: \div \: \frac{c}{a}\\ = \frac{c}{d} \: \times\: \frac{a}{c} \\ = \frac{c\: \times\: a}{d \: \times\: c} \\ = \frac{\not{c}\: \times\: a}{d \: \times\: \not{c}} \\ = \frac{a}{d}\)

(e) \( \frac{9x}{5} \: \div \: \frac{3x}{10} \\ =\frac{9x}{5} \: \times \: \frac{10}{3x} \\ = \frac{9x\: \times\:10}{5\: \times\: 3x} \\ = \frac{9\: \times\:10\: \times\: x}{5\: \times\: 3 \: \times\: x} \\ = \frac{\not{9}^{3}\: \times\:10\: \times\: \not{x}}{5\: \times\: \not{3} \: \times\: \not{x}} \\ = \frac{3 \: \times\: 10}{5} \\ = \scriptsize 3 \: \times\: 2 \\ = \scriptsize 6 \)

(f) \( \frac{z^3}{6xy} \: \div \: \frac{9}{2xy} \\ = \frac{z^3}{6xy} \: \times\: \frac{2xy}{9} \\ =\frac{z^3 \: \times \: 2xy}{6xy\: \times \: 9} \\ = \frac{z^3 \: \times \: 2 \: \times \: x \: \times \: y}{ 6\: \times \: x \: \times \: y \: \times \: 9} \\ = \frac{z^3 \: \times \: \not{2} \: \times \: \not{x} \: \times \: \not{y}}{ \not{6}^{3} \: \times \: \not{x} \: \times \: \not{y} \: \times \: 9} \\ = \frac{z^3}{3 \: \times \: 9} \\ = \frac{z^3}{27} \)

Evaluation 

Simplify the following 

(a) \( \frac{g}{7} \: \times \: \frac{14}{g^2}\)

(b) \( \frac{3}{x} \: \div \: \frac{6}{2x}\)

(c) \( \frac{x}{y} \: \div \: \frac{x}{y}\)

(d) \( \frac{t^2}{5a} \: \times \: \frac{3a}{t}\)

(e) \( \frac{4x}{5y} \: \times \: \frac{4y}{7}\)

(f) \( \frac{6x^2}{11y} \: \div \: \frac{18x}{33y^2}\)

Answer

(a) \( \frac{2}{g} \)

(b) 1

(c) 1

(d) \( \frac{3t}{5} \)

(e) \( \frac{16x}{35} \)

(f) \( \scriptsize xy\)