Back to Course

JSS2: MATHEMATICS - 2ND TERM

0% Complete
0/0 Steps
  1. Transactions in the Homes and Offices | Week 1
    8 Topics
    |
    1 Quiz
  2. Expansion and Factorization of Algebraic Expressions | Week 2
    4 Topics
    |
    1 Quiz
  3. Algebraic Expansion and Factorization of Algebraic Expression | Week 3
    4 Topics
    |
    1 Quiz
  4. Algebraic Fractions I | Week 4
    4 Topics
    |
    1 Quiz
  5. Addition and Subtraction of Algebraic Fractions | Week 5
    2 Topics
    |
    1 Quiz
  6. Solving Simple Equations | Week 6
    4 Topics
    |
    1 Quiz
  7. Linear Inequalities I | Week 7
    4 Topics
    |
    1 Quiz
  8. Linear Inequalities II | Week 8
    2 Topics
    |
    1 Quiz
  9. Quadrilaterals | Week 9
    2 Topics
    |
    1 Quiz
  10. Angles in a Polygon | Week 10
    4 Topics
    |
    1 Quiz
  11. The Cartesian Plane Co-ordinate System I | Week 11
    3 Topics
    |
    1 Quiz
  12. The Cartesian Plane Co-ordinate System II | Week 12
    1 Topic
    |
    1 Quiz
  • excellence
  • Follow

Lesson Progress
0% Complete

Topic Content:

  • Angles in Quadrilaterals

Below is a diagram of a quadrilateral

cover course page218

Two triangles can be formed within the quadrilateral ABCD

cover course page290

Sum of angles in each triangle = 180°
Sum of angles in a quadrilateral  = 2 × 180°
Sum of interior angles in a quadrilateral =  360°

Examples 10.3.1:

Calculate the angle marked x in the quadrilateral below.

cover course page221

Solution

x + 80° + 108° + 140° = 360° (sum of interior angles in a quadrilateral)

x + 328° = 360°

x = 360° – 328°

x = 32°

Example 10.3.4:

Two angles of a quadrilateral are 56° and 136° and the other two angles are equal. Find the size of each of the equal angles.

Solution

let each of the equal angles be x

x + x + 56 + 136 = 360 (Sum of interior angles in a quadrilateral)

2x  + 192 = 360°

2x = 360° – 192°

2x  = 168°

Divide both sides by 2

x = \( \frac{168}{2} \)

x = 84°

⇒ each of the equal angles is 84°

Example 10.3.5:

Find the angles x and y in the quadrilateral below.

cover course page288 e1647177513836

Solution

The quadrilateral is a kite. A kite is symmetrical. So it has two opposite and equal angles.

∴ x = y

90º + 40º + x + x = 360º (Sum of interior angles in a quadrilateral =  360°)

90º + 40º + 2x = 360º

130º + 2x = 360º

2x = 360º – 130º

2x = 230º

divide both sides by 2

\( \frac{2x}{2} = \frac{230}{2} \)

⇒ \( \scriptsize x = 115^o \)

⇒ \( \scriptsize \therefore y = 115^o \)

Example 10.3.6:

In the quadrilateral below find the angles p, q, r.

cover course page289

Solution

First, let’s find r

Check if you have parallel lines. There are parallel lines so let’s apply angles in parallel lines.

r = 42º (alternate angles)

Let’s find p

p + 55º + 42º = 180º (sum of angles in a triangle)

p + 97º = 180º

p = 180º – 97º

p = 83º

Finally, let’s find q

p + (55º + r) + q + (42º + 31º) = 360º (Sum of interior angles in a quadrilateral =  360°)

83º + (55 + 42º) + q + (42º + 31º) = 360º

83º + 97º + q + 73º = 360º

q + 253º = 360º

q = 360º – 253º

q = 107º

⇒ p = 83º, q = 107º, r = 42º