JSS2: MATHEMATICS - 2ND TERM
-
Transactions in the Homes and Offices | Week 18 Topics|1 Quiz
-
Expansion and Factorization of Algebraic Expressions | Week 24 Topics|1 Quiz
-
Algebraic Expansion and Factorization of Algebraic Expression | Week 34 Topics|1 Quiz
-
Algebraic Fractions I | Week 44 Topics|1 Quiz
-
Addition and Subtraction of Algebraic Fractions | Week 52 Topics|1 Quiz
-
Solving Simple Equations | Week 64 Topics|1 Quiz
-
Linear Inequalities I | Week 74 Topics|1 Quiz
-
Linear Inequalities II | Week 82 Topics|1 Quiz
-
Quadrilaterals | Week 92 Topics|1 Quiz
-
Angles in a Polygon | Week 104 Topics|1 Quiz
-
The Cartesian Plane Co-ordinate System I | Week 113 Topics|1 Quiz
-
The Cartesian Plane Co-ordinate System II | Week 121 Topic|1 Quiz
Angles in Quadrilaterals
Topic Content:
- Angles in Quadrilaterals
Below is a diagram of a quadrilateral
Two triangles can be formed within the quadrilateral ABCD
Sum of angles in each triangle = 180°
Sum of angles in a quadrilateral = 2 × 180°
Sum of interior angles in a quadrilateral = 360°
Examples 10.3.1:
Calculate the angle marked x in the quadrilateral below.
Solution
x + 80° + 108° + 140° = 360° (sum of interior angles in a quadrilateral)
x + 328° = 360°
x = 360° – 328°
x = 32°
Example 10.3.4:
Two angles of a quadrilateral are 56° and 136° and the other two angles are equal. Find the size of each of the equal angles.
Solution
let each of the equal angles be x
⇒ x + x + 56 + 136 = 360 (Sum of interior angles in a quadrilateral)
2x + 192 = 360°
2x = 360° – 192°
2x = 168°
Divide both sides by 2
x = \( \frac{168}{2} \)
x = 84°
⇒ each of the equal angles is 84°
Example 10.3.5:
Find the angles x and y in the quadrilateral below.
Solution
The quadrilateral is a kite. A kite is symmetrical. So it has two opposite and equal angles.
∴ x = y
90º + 40º + x + x = 360º (Sum of interior angles in a quadrilateral = 360°)
90º + 40º + 2x = 360º
130º + 2x = 360º
2x = 360º – 130º
2x = 230º
divide both sides by 2
\( \frac{2x}{2} = \frac{230}{2} \)⇒ \( \scriptsize x = 115^o \)
⇒ \( \scriptsize \therefore y = 115^o \)
Example 10.3.6:
In the quadrilateral below find the angles p, q, r.
Solution
First, let’s find r
Check if you have parallel lines. There are parallel lines so let’s apply angles in parallel lines.
r = 42º (alternate angles)
Let’s find p
p + 55º + 42º = 180º (sum of angles in a triangle)
p + 97º = 180º
p = 180º – 97º
p = 83º
Finally, let’s find q
p + (55º + r) + q + (42º + 31º) = 360º (Sum of interior angles in a quadrilateral = 360°)
83º + (55 + 42º) + q + (42º + 31º) = 360º
83º + 97º + q + 73º = 360º
q + 253º = 360º
q = 360º – 253º
q = 107º
⇒ p = 83º, q = 107º, r = 42º