JSS2: MATHEMATICS - 2ND TERM
-
Transactions in the Homes and Offices | Week 18 Topics|1 Quiz
-
Expansion and Factorization of Algebraic Expressions | Week 24 Topics|1 Quiz
-
Algebraic Expansion and Factorization of Algebraic Expression | Week 34 Topics|1 Quiz
-
Algebraic Fractions I | Week 44 Topics|1 Quiz
-
Addition and Subtraction of Algebraic Fractions | Week 52 Topics|1 Quiz
-
Solving Simple Equations | Week 64 Topics|1 Quiz
-
Linear Inequalities I | Week 74 Topics|1 Quiz
-
Linear Inequalities II | Week 82 Topics|1 Quiz
-
Quadrilaterals | Week 92 Topics|1 Quiz
-
Angles in a Polygon | Week 104 Topics|1 Quiz
-
The Cartesian Plane Co-ordinate System I | Week 113 Topics|1 Quiz
-
The Cartesian Plane Co-ordinate System II | Week 121 Topic|1 Quiz
Multiplication and Division of Directed Algebraic Terms
Topic Content:
- Multiplication and Division of Directed Algebraic Terms
When multiplying and dividing positive and negative numbers remember this: If the signs are the same the answer is positive, if the signs are different the answer is negative.
Even numbers of negative signs (-) give a plus sign (+)
e.g. (–) × (–) × (–) × (–) = + (There are 4 negative signs which is even)
Odd numbers of negative signs (-) give a negative sign (-)
e.g. (–) × (–) × (–) × (–) × (–) = – (There are 5 negative signs which is odd)
Example 2.2.1:
Simplify the following expressions
a. \( \scriptsize 4 \: \times \: (+8y) \)
b. \( \scriptsize (-3) \: \times \: (+8y) \)
c. 12ab ÷ (-4a)
d. (-9a) × (-3a) × (-2a)
e. (-18x3) ÷ (-3x)
f. (-5) × (6a)
Solution
a. \( \scriptsize 4 \: \times \: (+8y) \)
= \( \scriptsize 4 \: \times \: 8y \)
= \( \scriptsize 4 \: \times \: 8 \: \times \: y \)
= \( \scriptsize 32y \)
b. \( \scriptsize (-3) \: \times \: (+8y) \)
= \( \scriptsize -3 \: \times \: 8y \)
= \( \scriptsize -3 \: \times \: 8 \: \times \: y \)
= \( \scriptsize -24y \)
c. 12ab ÷ (-4a) = \( \frac{12ab}{-4a} \\ = \frac{12 \: \times \: a \: \times \: b}{-4\: \times \: a} \\ = \: -\left(\frac{12ab}{4a} \right) \\ = \: – \left(\frac{12\not{a}b}{4\not{a}} \right) \\ = \: – \frac{12b}{4} \\ = \scriptsize -3b \)
d. (-9a) × (-3a) × (-2a)
= \( \scriptsize \: – (9a\: \times \: 3a \: \times \: 2a) \)
= \( \scriptsize \: – (9\: \times \: 3\: \times \: 2\: \times \:a\: \times \:a \: \times \:a) \)
=\( \scriptsize \: – 54a^3 \)
e. (-18x3) ÷ (-3x)
= \( \frac{-18x^3}{-3x} \\ = \frac{-18 \: \times \: x \: \times \: x\: \times \: \not{x}}{-3 \: \times \: \not{x}}\\ =\frac{-18 \: \times \: x \: \times \: x }{-3 } \\ = \scriptsize 6x^2\)
f. (-5) × (6a)
= -5 × 6 × a
= -30a
Evaluation
1. (-4) × 2t
2. 9p × (-1)
3. (35x) ÷ (-7)
4. \( \frac{12ab}{-8} \)
5. 81d2 ÷ (-3d)
6. \( \scriptsize \: – x \: \times \: (-y^2) \)
7. \(\scriptsize (-x) \times \: (-y) \times \: (-z) \)
8. \( \frac {(-x^2) \: \times \: (-z^2)}{-x} \)
Answer
1. -8t
2. -9p
3. -5x
4. \(\: – \frac{3}{2}\scriptsize ab \)
5. -27d
6. xy2
7. –xyz
8. –xz2