Back to Course

JSS2: MATHEMATICS - 2ND TERM

0% Complete
0/0 Steps
  1. Transactions in the Homes and Offices | Week 1
    8 Topics
    |
    1 Quiz
  2. Expansion and Factorization of Algebraic Expressions | Week 2
    4 Topics
    |
    1 Quiz
  3. Algebraic Expansion and Factorization of Algebraic Expression | Week 3
    4 Topics
    |
    1 Quiz
  4. Algebraic Fractions I | Week 4
    4 Topics
    |
    1 Quiz
  5. Addition and Subtraction of Algebraic Fractions | Week 5
    2 Topics
    |
    1 Quiz
  6. Solving Simple Equations | Week 6
    4 Topics
    |
    1 Quiz
  7. Linear Inequalities I | Week 7
    4 Topics
    |
    1 Quiz
  8. Linear Inequalities II | Week 8
    2 Topics
    |
    1 Quiz
  9. Quadrilaterals | Week 9
    2 Topics
    |
    1 Quiz
  10. Angles in a Polygon | Week 10
    4 Topics
    |
    1 Quiz
  11. The Cartesian Plane Co-ordinate System I | Week 11
    3 Topics
    |
    1 Quiz
  12. The Cartesian Plane Co-ordinate System II | Week 12
    1 Topic
    |
    1 Quiz
  • excellence
  • Follow

Lesson Progress
0% Complete

Topic Content:

  • Multiplication and Division of Directed Algebraic Terms

When multiplying and dividing positive and negative numbers remember this: If the signs are the same the answer is positive, if the signs are different the answer is negative.

Even numbers of negative signs (-) give a plus sign (+)

e.g. () × () × () × () = +  (There are 4 negative signs which is even)

Odd numbers of negative signs (-) give a negative sign (-)

e.g. () × () × () × () × () = – (There are 5 negative signs which is odd)

Example 2.2.1:

Simplify the following expressions 

a. \( \scriptsize 4 \: \times \: (+8y) \)
b. \( \scriptsize (-3) \: \times \: (+8y) \)
c. 12ab ÷ (-4a)
d. (-9a) × (-3a) × (-2a) 
e. (-18x3) ÷ (-3x)
f. (-5) × (6a) 

Solution 

a. \( \scriptsize 4 \: \times \: (+8y) \)

= \( \scriptsize 4 \: \times \: 8y \)

= \( \scriptsize 4 \: \times \: 8 \: \times \: y \)

= \( \scriptsize 32y \)

 b. \( \scriptsize (-3) \: \times \: (+8y) \)

= \( \scriptsize -3 \: \times \: 8y \)

= \( \scriptsize -3 \: \times \: 8 \: \times \: y \)

= \( \scriptsize -24y \)

c. 12ab ÷ (-4a) = \( \frac{12ab}{-4a} \\ = \frac{12 \: \times \: a \: \times \: b}{-4\: \times \: a} \\ = \: -\left(\frac{12ab}{4a} \right) \\ = \: – \left(\frac{12\not{a}b}{4\not{a}} \right) \\ = \: – \frac{12b}{4} \\ = \scriptsize -3b \)

d. (-9a) × (-3a) × (-2a) 

= \( \scriptsize \: – (9a\: \times \: 3a \: \times \: 2a) \)

= \( \scriptsize \: – (9\: \times \: 3\: \times \: 2\: \times \:a\: \times \:a \: \times \:a) \)

=\( \scriptsize \: – 54a^3 \)

e. (-18x3) ÷ (-3x)

= \( \frac{-18x^3}{-3x} \\ = \frac{-18 \: \times \: x \: \times \: x\: \times \: \not{x}}{-3 \: \times \: \not{x}}\\ =\frac{-18 \: \times \: x \: \times \: x }{-3 } \\ = \scriptsize 6x^2\)

f. (-5) × (6a)

= -5 × 6 × a

= -30a 

Evaluation

1. (-4) × 2t

2. 9p × (-1)

3. (35x) ÷ (-7)

4. \( \frac{12ab}{-8} \)

5. 81d2 ÷ (-3d) 

6. \( \scriptsize \: – x \: \times \: (-y^2) \)

7. \(\scriptsize (-x) \times \: (-y) \times \: (-z) \)

8. \( \frac {(-x^2) \: \times \: (-z^2)}{-x} \)

Answer 

1. -8t  

2. -9p

3. -5x

4. \(\: – \frac{3}{2}\scriptsize ab \)

5. -27d

6. xy2

7.xyz 

8.xz2

avatar