Topic Content:
- Substitution into Algebraic Expressions
To substitute means to replace letters in algebraic expressions with values.
Example 2.3.1:
Find the value of
(a) \( \scriptsize 4x \)
(b) \( \scriptsize xy \: – \: 5y \)
(c) \( \scriptsize 5x^2 \: – \: 2y^3 \)
When x = 2, and y = 3
Solution
a. \( \scriptsize 4x \\ = \scriptsize 4 \: \times \: x \\ \scriptsize (x = 2) \\ = \scriptsize 4 \: \times \: 2 = \scriptsize 8\)
Note: We replaced/substituted x with 2
b. \( \scriptsize xy \: – \: 5y \)
= \( \scriptsize (x \: \times \: y) \: – \: (5 \: \times \: y) \)
When x = 2, and y = 3
Substitute the values into the equation
= \( \scriptsize (2 \: \times \: 3) \: – \: (5 \: \times \: 3) \)
= \( \scriptsize 6 \: – \: 15 \)
= \( \scriptsize -9 \)
c. \( \scriptsize 5x^2 \: – \: 2y^3 \)
= \( \scriptsize (5 \: \times \: x \: \times \: x ) \: – \: (2 \: \times \: y \: \times \: y \: \times \: y)\)
When x = 2, and y = 3
Substitute the values into the equation
= \( \scriptsize (5 \: \times \: 2 \: \times \: 2 ) \: – \: (2 \: \times \: 3 \: \times \: 3 \: \times \: 3)\)
= \( \scriptsize 20 \: – \: 54 = \; -34\)
Example 2.3.2:
If x = -4, y = 5, z = \( \frac{1}{2}\), m = 10 and n = 0
Evaluate the following;
a. \( \scriptsize zn \: + \: xyz \)
b. \( \frac {(-3x \: – \: ym)} {2m \: – \: y^2 }\)
Solution
a. \( \scriptsize zn \: + \: xyz \)
= \( \scriptsize ( z \: \times \: n) \: + \: (x\: \times \:y\: \times \:z) \)
If x = -4, y = 5, z = \( \frac{1}{2}\), m = 10 and n = 0
Substitute the values into the equation
= \(\normalsize \frac{1}{2} \scriptsize \: \times \: 0 \: + \: \left (-4 \: \times \: 5\: \times \: \normalsize \: – \frac{1}{2} \right)\)
= \(\scriptsize 0 \: + \: \left ({\color{Red} -}4 \: \times \: 5\: \times \: {\color{Red} -} \normalsize \frac{1}{2} \right)\)
\( \scriptsize {\color{Red} -} \: \times \: {\color{Red} -} = {\color{Blue} +} \)= \(\scriptsize 0 \: + \: \left (-4 \: \times \: – \normalsize \frac{1}{2} \scriptsize \: \times \: 5 \right)\)
= \(\scriptsize 0 \: + \: \left (+2 \: \times \: 5 \right)\)
= \(\scriptsize 0 \: + \: \left (\scriptsize + 10 \right)\)
= \(\scriptsize 0 \: + \: 10 \)
= \(\scriptsize 10 \)
b. \( \frac {(-3x \: – \: ym)} {2m \: – \: y^2 }\)
= \( \frac {(-3\: \times \: x) \: – \: (y\: \times \:m)} {(2\: \times \:m) \: – \: (y \: \times \: y) }\)
If x = -4, y = 5, z = \( \frac{1}{2}\), m = 10 and n = 0
Substitute the values into the equation
= \( \frac {\left [(-3\: \times \: -4) \: – \: (5\: \times \:10) \right]} {(2\: \times \:10) \: – \: (5 \: \times \: 5) }\)
= \( \frac{ -(-12 \: – \: 50)}{20 \: – \: 25} \)
= \( \frac{ {\color{Red} -}({\color{Red} -}62)}{-5} \)
\( \scriptsize {\color{Red} -} \: \times \: {\color{Red} -} = {\color{Blue} +} \)= \( \frac{{\color{Blue} +}62}{{\color{Red} -}5} \)
\( \scriptsize {\color{Blue} +} \: \div \: {\color{Red} -}\: = \: {\color{Red} -} \)= \({\color{Red} -} \frac{62}{5} \)
= \( \scriptsize -12 \frac{2}{5} \)
Evaluation Questions:
If x = -8, y = 5, z = -10.
Evaluate
(i) xy + z
(ii) 4x + z
(iii) 5xyz3
(iv) \( \frac {5y^2 \: – \: 10x}{2z} \)
(v) \( \frac {x^2 \: – \: y^2}{2} \)
(vi) \( \scriptsize 2y \: \times \: (-zy) \)
(vii) \( \scriptsize -5 \: \times \: x^2 \)
Answer
(i) -50
(ii) -47
(iii) 200 000
(iv) -10.25 or \(\scriptsize \: – 10 \frac{1}{4} \)
(v) \(\scriptsize \: – 3 \frac{9}{10} \)
(vi) 500
(vii) -320