JSS3: MATHEMATICS - 1ST TERM
-
Binary Number System I | Week 15 Topics|1 Quiz
-
Binary Number System II | Week 26 Topics|1 Quiz
-
Word Problems I | Week 34 Topics|1 Quiz
-
Word Problems with Fractions II | Week 41 Topic|1 Quiz
-
Factorization I | Week 54 Topics|1 Quiz
-
Factorization II | Week 63 Topics|1 Quiz
-
Factorization III | Week 73 Topics|1 Quiz
-
Substitution & Change of Subject of Formulae | Week 82 Topics|1 Quiz
-
Simple Equations Involving Fractions | Week 93 Topics|1 Quiz
-
Word Problems | Week 101 Topic|1 Quiz
Complete Factorization
Topic Content:
- Complete Factorization
To factorize an expression completely, take the H.C.F outside the bracket and then divide each term with the H.C.F..
Worked Example 5.2.1:
Find the H.C.F of the following and then factorize:
a. 6x and 3y
b. 10xy and 20xy2
c. 12y + 8y2
d. 36ab + 12ab2
e. 12p2 q – 9pq
Solution
a. 6x and 3y
\( \scriptsize 6x = 2 \: \times \: 3 \: \times \: x \) \( \scriptsize 3y = 3 \: \times \: y \)H.C.F = 3
Take the H.C.F outside the bracket and then divide each term with the HCF
∴ \(\normalsize \frac{6x}{3} \scriptsize =2x \: and \: \normalsize \frac{3y}{3} \scriptsize = y \)
6x and 3y = 3(2x and y)
b. 10xy and 20xy2
10xy = \( \scriptsize 2 \: \times \: 5 \: \times \: x \: \times \: y \)
20xy2 = \( \scriptsize 2 \: \times \: 2 \: \times \: 5 \: \times \: x \: \times \: y\: \times \: y \)
H.C.F = \( \scriptsize 2 \: \times \: 5 \: \times \: x \: \times \: y = 10xy\)
∴\(\normalsize \frac{10xy}{10xy} \scriptsize =1 \: and \: \normalsize \frac{20xy^2}{10xy} \scriptsize = 2y \)
= 10xy (1 and 2y)
c. 12y + 8y2
Factors of 12y = 2 × 2 × 3 × y
Factors of 8y2 = 2 × 2 × 2 × y × y
H.C.F = 2 × 2 × y = 4y
∴\(\normalsize \frac{12y}{4y} \scriptsize = 3 \: and \: \normalsize \frac{8y^2}{4y} \scriptsize = 2y \)
= 4y (3 + 2y)
d. 36ab + 12ab2
36ab = 2 × 2 × 3 × 3 × a × b
12ab2 = 2 × 2 × 3 × a × b × b
HCF = 2 × 2 × 3 × a × b = 12ab
∴\(\normalsize \frac{36ab}{12ab} \scriptsize = 3 \: and \: \normalsize \frac{12ab^2}{12ab} \scriptsize = b \)
= 12ab (3 + b)
e. 12p2 q – 9pq
12p2 q = 2 × 2 × 3 × p × p × q
9pq = 3 × 3 × p × q
HCF = 3 × p × q = 3pq
∴\( \normalsize \frac{12p^2q}{3pq} \scriptsize = 4p \: and \: \normalsize \frac{9pq}{3pq} \scriptsize = 3\)
= 3pq(4p – 3)