Back to Course

JSS3: MATHEMATICS - 1ST TERM

0% Complete
0/0 Steps
  1. Binary Number System I | Week 1
    5 Topics
    |
    1 Quiz
  2. Binary Number System II | Week 2
    6 Topics
    |
    1 Quiz
  3. Word Problems I | Week 3
    4 Topics
    |
    1 Quiz
  4. Word Problems with Fractions II | Week 4
    1 Topic
    |
    1 Quiz
  5. Factorization I | Week 5
    4 Topics
    |
    1 Quiz
  6. Factorization II | Week 6
    3 Topics
    |
    1 Quiz
  7. Factorization III | Week 7
    3 Topics
    |
    1 Quiz
  8. Substitution & Change of Subject of Formulae | Week 8
    2 Topics
    |
    1 Quiz
  9. Simple Equations Involving Fractions | Week 9
    3 Topics
    |
    1 Quiz
  10. Word Problems | Week 10
    1 Topic
    |
    1 Quiz
  • excellence
  • Follow

Lesson Progress
0% Complete

Topic Content:

  • Factorizing By Grouping

To factorize an expression containing four terms, you need to group the terms into pairs. Then factorize each pair of terms.

Worked Example 5.3.1:

Factorize the following by grouping:

a. \( \scriptsize x^2 + x \: – \: x \: – \:1\)
b. \( \scriptsize 6xy \: – \: 2x \: – \: 3y + 1\)
c. \( \scriptsize 6x^2 \: + \: 15x \: – \: 2x \: – \: 5 \)
d. \( \scriptsize 4a^3y \: – \: 4a^2bx \: + \: 2ay^2 \: – \: 2bxy \)
e. \( \scriptsize 6x^2 \: + \: 2xy \: – \: 6xy \: – \: 2y^2 \)

Solution

a. \( \scriptsize x^2 + x \: – \: x \: – \:1 \\ \scriptsize = (x^2 + x) \: – \: x \: – \:1 \\ \scriptsize(x^2 + x) \: – \: (x + 1) \\ \scriptsize x(x+1) \: – \: 1 (x + 1) \\ \scriptsize = (x \: – \:1)( x + 1)\)

b. \( \scriptsize 6xy \: – \: 2x \: – \: 3y + 1 \\ \scriptsize (6xy \: – \: 2x) \: – \: (3y\: – \:1) \\ \scriptsize 2x(3y \: – \: 1) \: – \: 1(3y\: -\: 1) \\ \scriptsize (2x\: – \: 1)(3y\: – \:1) \)

c. \( \scriptsize 6x^2 \: + \: 15x \: – \: 2x \: – \: 5 \\ \scriptsize (6x^2 \: + \: 15x) \: – \: (2x \: +\: 5) \\ \scriptsize 3x(2x \: + \: 5) \: – \: 1(2x \: +\: 5) \\ \scriptsize (3x\: – \: 1)(2x \: +\: 5) \)

d. \( \scriptsize 4a^3y \: – \: 4a^2bx \: + \: 2ay^2 \: – \: 2bxy \\ \scriptsize (4a^3y \:- \: 4a^2bx) \:+ \: (2ay^2 \: -\: 2bxy) \\ \scriptsize 4a^2(ay \:- \: bx) \: + \: 2y(ay \: -\: bx) \\ \scriptsize (4a^2\: + \: 2y)(ay \: -\: bx) \)

e. \( \scriptsize 6x^2 \: + \: 2xy \: – \: 6xy \: – \: 2y^2 \\ \scriptsize (6x^2 \: + \: 2xy) \: – \: (6xy \: +\: 2y^2) \\ \scriptsize 2x(3x \: + \: y) \: – \: 2y(3x \: + \: y) \\ \scriptsize (2x\: – \: 2y)(3x \: + \: y) \)

avatar