Topic Content:
- Equations with Unknown Variables in the Denominator
Worked Example 9.2.1:
Solve the following:
i. \( \frac{12}{x} \; – \; \frac{2}{3x} = \frac{1}{6} \)
ii. \( \frac{4}{5x} = \frac{1}{35} \: – \: \frac{3}{7} \)
iii. \( \frac{2}{5x} \: – \: \frac{3}{2x} = \scriptsize 1 \frac{4}{7} \)
iv. \( \frac{2}{5} = \frac{1}{2y} \; – \; \frac{3}{4y} \)
v. \( \frac{5}{8} = \frac{10}{x}\)
vi. \( \frac{1}{x} = \frac{2}{7}\)
i. \( \frac{12}{x} \; – \; \frac{2}{3x} = \frac{1}{6} \)
Find the L.C.M
\( \frac{3(12) \; – \; 1(2)}{3x} = \frac{1}{6} \) \( \frac{36 \; – \; 2}{3x} = \frac{1}{6} \) \( \frac{34}{3x} = \frac{1}{6} \)Cross multiply
\( \scriptsize 3x = 34 \; \times \; 6 \) \( \scriptsize 3x = 204 \)Divide both sides by 3
\( \frac{ 3x}{3} = \frac{204}{3} \) \( \scriptsize x = \normalsize \frac{204}{3} \) \( \scriptsize x = 68\)ii. \( \frac{4}{5x} = \frac{1}{35} \: – \: \frac{3}{7} \)
Find the L.C.M of the right side
\( \frac{4}{5x} = \frac{1 \: – \: 15}{35} \) \( \frac{4}{5x} = \frac{-14}{35} \)Cross multiply
\( \scriptsize 4 \; \times \; 35 = 5x \; \times \; -14 \) \( \scriptsize 140 = -70x \)Divide both sides by -70
\( \frac{ 140}{-70} = \frac{-70x}{-70} \)-2 = x
Move x to the left hand side
∴ x = – 2
iii. \( \frac{2}{5x} \: – \: \frac{3}{2x} = \scriptsize 1 \frac{4}{7} \)
Find the L.C.M of the right hand side
\( \frac{2(2) \: – \: 5(3)}{10x} = \frac{11}{7} \) \( \frac{4 \: – \: 15}{10x} = \frac{11}{7} \) \( \frac{-11}{10x} = \frac{11}{7} \)Cross multiply
\( \scriptsize +7 \: \times \: -11 = 10x \: \times \: 11 \) \( \scriptsize -77 = 110x \)Divide both sides by 110
\( \frac{ -77}{110} = \frac{110x}{110} \)Move x to the left-hand side
x = \( \frac{ -77}{110} \)
iv. \( \frac{2}{5} = \frac{1}{2y} \; – \; \frac{3}{4y} \)
Find the L.C.M of the right side
⇒ \( \frac{2}{5} = \frac{2(1) \; -\; 3}{4y} \)
⇒ \( \frac{2}{5} = \frac{2 \; -\; 3}{4y} \)
⇒ \( \frac{2}{5} = \frac{-1}{4y} \)
Cross multiply
\( \scriptsize 2 \; \times \; 4y = 5 \; \times \; -1 \) \( \scriptsize 8y = -5 \)Divide both sides by 8
\( \frac{8y}{8} = \frac{-5}{8} \) \( \frac{\not{8}y}{\not{8}} = \frac{-5}{8} \) \( \scriptsize y = \normalsize \frac{-5}{8} \)v. \( \frac{5}{8} = \frac{10}{x}\)
Cross multiply
\( \frac{5 \: \searrow}{8 \: \nearrow} = \frac{\swarrow \: 10}{ \nwarrow \: x}\) \( \scriptsize 8 \: \times \: 10 = 5x \) \( \scriptsize 80 = 5x \)Divide both sides by 5
\( \frac{80}{5} = \frac{5x}{5} \) \( \scriptsize x = 16\)vi. \( \frac{1}{x} = \frac{2}{7}\)
Cross multiply
1 × 7 = 2 × x
7 = 2x
Divide both sides by 2
\( \frac{7}{2} = \frac{2x}{2} \) \( \frac{7}{2} = \frac{2x}{2} \) \( \frac{7}{2} = \frac{\not{2}x}{\not{2}} \) \(\scriptsize x = \normalsize \frac{7}{2}\) \(\scriptsize x = 3 \frac{1}{2}\)