JSS3: MATHEMATICS - 1ST TERM
-
Binary Number System I | Week 15 Topics|1 Quiz
-
Binary Number System II | Week 26 Topics|1 Quiz
-
Word Problems I | Week 34 Topics|1 Quiz
-
Word Problems with Fractions II | Week 41 Topic|1 Quiz
-
Factorization I | Week 54 Topics|1 Quiz
-
Factorization II | Week 63 Topics|1 Quiz
-
Factorization III | Week 73 Topics|1 Quiz
-
Substitution & Change of Subject of Formulae | Week 82 Topics|1 Quiz
-
Simple Equations Involving Fractions | Week 93 Topics|1 Quiz
-
Word Problems | Week 101 Topic|1 Quiz
Simple Equations Involving Fractions
Topic Content:
- Simple Equations Involving Fractions
To solve simple equations containing fractions, first eliminate the fractions by multiplying each term in the equation by the LCM of the denominator.
Worked Example 9.1.1:
Solve the following:
i. \( \frac{x}{12} = \scriptsize 5 \)
ii. \( \frac{x}{9} = \frac{4}{3}\)
iii. \( \frac{y \: – \: 5}{4} = \scriptsize 8 \)
iv. \( \scriptsize 2x \: – \: \normalsize \frac{x}{8} = \scriptsize 12 \frac{1}{2} \)
v. \( \frac{5x \: – \: 1}{4} = \frac{2x \: – \: 1}{2}\)
Solution
i. \( \frac{x}{12} = \scriptsize 5 \)
\( \frac{x}{12}\scriptsize \: \times \: 12 = 5 \: \times \: 12\)
\( \scriptsize x = 12 \: \times \: 5 \\ \scriptsize = 60\)
ii. \( \frac{x}{9} = \frac{4}{3}\)
Cross multiply
\( \frac{x\: \searrow}{9 \: \nearrow} = \frac{ \swarrow \: 4}{\nwarrow \: 3 }\) \( \scriptsize 3 \: \times \: x = 9 \: \times \: 4 \)\( \scriptsize 3x = 36 \)
Divide by 3
\( \frac{3x}{3} = \frac{36}{3}\) \( \frac{\not{3}x}{\not{3}} = \frac{36}{3}\)x = 12
iii. \( \frac{y \: – \: 5}{4} = \scriptsize 8 \)
Multiply through by 4
\( \scriptsize 4 \: \times \: \normalsize \frac{y \: – \: 5}{4} = \scriptsize 4 \: \times \: 8 \) \( \scriptsize y \: – \: 5 = 32 \)Add 5 to both sides
\( \scriptsize y \: – \: 5 \: + \: 5 = 32 \: + \: 5 \) \( \scriptsize y = 37 \)iv. \( \scriptsize 2x \: – \: \normalsize \frac{x}{8} = \scriptsize 12 \frac{1}{2} \)
\( \frac{2x}{1} \: – \: \frac{x}{8}= \frac{25}{2}\)Take the L.C.M
\( \frac{8(2x)\: – \: 1(x)}{8} = \frac{25}{2}\) \( \frac{16x\: – \: x}{8} = \frac{25}{2}\) \( \frac{15x}{8} = \frac{25}{2}\) \( \scriptsize 15x \: \times \: 2 =25 \: \times \: 8 \) \( \scriptsize 30x =200 \)x = \( \frac{200}{30} \)
x = \(\scriptsize 6 \frac{2}{3} \: or \: 6.67 \)
v. \( \frac{5x \: – \: 1}{4} = \frac{2x \: – \: 1}{2}\)
Cross multiply
\( \scriptsize 2(5x \: – \: 1) = 4(2x \: – \: 1) \) \( \scriptsize 10x \: – \: 2 = 8x \: – \: 4 \)Take like terms
\( \scriptsize 10x \: – \: 8x = -4 \: + \: 2 \) \( \scriptsize 2x = -2 \)Divide both sides by 2
\( \frac {2x}{2} =\frac{ -2}{2} \)x = -1