Back to Course

SS1: MATHEMATICS - 1ST TERM

0% Complete
0/0 Steps
  1. Number Base System I | Week 1
    6 Topics
    |
    2 Quizzes
  2. Number Base System II | Week 2
    3 Topics
  3. Number Base System III | Week 3
    2 Topics
    |
    1 Quiz
  4. Modular Arithmetic I | Week 4
    2 Topics
  5. Modular Arithmetic II | Week 5
    3 Topics
  6. Modular Arithmetic III | Week 6
    4 Topics
    |
    1 Quiz
  7. Indices I | Week 7
    3 Topics
    |
    1 Quiz
  8. Indices II | Week 8
    1 Topic
    |
    1 Quiz
  9. Logarithms I | Week 9
    3 Topics
  10. Logarithms II | Week 10
    4 Topics
    |
    1 Quiz



Lesson 7, Topic 3
In Progress

Worked Examples – Indices 1

Lesson Progress
0% Complete

Topic Content:

  • Worked Examples – Indices 1

Try to work these examples out on your own using the laws of indices.

Check the solutions by clicking (‘View Solution‘)

Worked Examples 7.3.1:

Evaluate the following:

(a) \( \scriptsize 5x^{-2}y \:\times\: 2x ^{-5}y^2\)

(b) \( \scriptsize 2^{4}\: \times \: \normalsize \left(\frac {1}{8}\right)^{^{-1} } \scriptsize \: \times \: 4^0\)

 

You are viewing an excerpt of this topic. Subscribe now to get full access!

Click on the button "Subscribe Now" below for Full Access

Subscribe Now

avatar

Responses

Your email address will not be published. Required fields are marked *

SOLUTION (a)

Question

⇒ \( \scriptsize 5x^{-2}y \times 2x ^{-5}y^2\)

Solution

Group like terms together

⇒ \( \scriptsize 5x^{-2} \times 2x ^{-5} \times y \times y^2\)

From the Laws of Indicies \( \scriptsize X^a \times X^b = X^{a + b} \)

∴ \( \scriptsize 10x^{-2 + (-5)} \times y^{1 + 2}\)

= \( \scriptsize 10x^{-7} \times y^{3}\)

From the Laws of Indicies \( \scriptsize X^{-a} = \normalsize \frac {1}{X^a} \)

∴ \( \scriptsize x^{-7} = \normalsize \frac{1}{x^{7}} \)

∴ \( \scriptsize 10\: \times \: \normalsize \frac{1}{x^{7}} \scriptsize \: \times \: y^{3}\\ = \normalsize \frac{10y^3}{x^{7}} \)

SOLUTION (b)

Question

⇒ \( \scriptsize 2^{4} \: \times \: \normalsize\left (\frac {1}{8}\right )^{^{-1}} \scriptsize \: \times \:  4^0\)

Solution

From the Laws of Indicies \( \scriptsize X^0 = 1 \scriptsize \; and \; X^{-a} = \normalsize \frac {1}{X^a} \)

∴ \( \scriptsize 4^0 = 1 \: and \: \normalsize \left( \frac {1}{8}\right)^{^{-1}} = \left(\frac {8}{1}\right)^{^{1}} \scriptsize = 8 \)

⇒ \( \scriptsize 2^{4} \times \normalsize \left(\frac {1}{8}\right)^{^{-1}} \scriptsize \times 4^0\)

= \( \scriptsize 2^{4} \times \scriptsize 8 \times 1 \)

Note: 8 = 2 x 2 x 2 = \( \scriptsize 2^3 \)

∴ = \( \scriptsize 2^{4} \times 2^{3} \)

From the Laws of Indicies \( \scriptsize X^a \:\times \: X^b = X^{a + b} \)

∴  \( \scriptsize 2^{4+ 3} = 2^7 \: or \: 128 \)

SOLUTION (c)

Question

⇒ \( \scriptsize \left[ 8^{-1}\normalsize \left(\frac{ry^2}{4ry^3}\right )^{^0}\scriptsize \: \times \: 8x \right ]^{-2}\)

Solution

From the Laws of Indicies \( \scriptsize X^0 = 1 \)

∴ \( \left (\frac{ry^2}{4ry^3}\right )^{^0} \scriptsize = 1 \)

⇒ \( \scriptsize \left [8^{-1}\: \times \: 1 \scriptsize \: \times \:  8x\right ]^{-2}\)

⇒ \( \left [ \normalsize \frac{1}{8} \scriptsize \: \times \:  8x\right ]^{-2}\)

⇒ \( \scriptsize x^{-2} \\ = \normalsize \frac{1}{x^2}\)

SOLUTION (d)

Question

⇒ \( \frac {1}{81}\scriptsize \left (\scriptsize 3^3 – 3^{x-1}\right)\)

Solution

We know that \( \frac {1}{81}= \frac {1}{3^4} \)

∴ \( \frac {1}{3^4}\scriptsize (3^3\: – \:3^{x-1})\)

⇒ \( \frac {3^3}{3^4}\: – \:\frac {3^{x-1}}{3^4}\)

From the Laws of Indicies = \( \scriptsize X^a \div X^b \: or \: \normalsize \frac{X^a}{X^b} \scriptsize= X^{a\: – \:b} \)

⇒ \( \scriptsize 3^{(3 \:- \:4)}\: – \: 3^{(x\: -\:1 \:- \:4)} \)

⇒ \( \scriptsize 3^{-1}\: – \:3^{(x \:-\:5)} \)

By Factorisation

Remember: \( \normalsize \frac{3^{-1}}{3^{-1}} \scriptsize = 1 \: and \: \normalsize \frac{3^{(x \: – \: 5)}}{3^{-1}} \scriptsize = 3^{x \: – \: 4} \)

= \( \scriptsize 3^{-1} ( 1 \: – \:3^{x\:-\:4}) \)

or \( \frac {1\: – \:3^{x\: -\:4}} {3}\)

SOLUTION (e)

Question

⇒ \( \scriptsize \sqrt {x^2 \:+ \:2xy \:+ \:y^2}\)

Solution

recall the complete square of \( \scriptsize x^2 \: +\: 2xy \:+ \:y^2 \:is \: (x \:+ \:y)^2 \)

∴ \( \scriptsize \sqrt {x^2\: +\: 2xy \:+ \:y^2} = \sqrt{ (x \:+ \:y)^2} \)

⇒ \(\scriptsize\left [(x \:+ \:y)^2 \right ]^{^{\normalsize \frac{1}{2}}}\)

⇒ \(\scriptsize (x \:+ \:y)^{2 \: \times \: \normalsize \frac{1}{2}}\)

⇒ \(\scriptsize (x \:+ \:y)^1\)

= \(\scriptsize (x \:+\: y)\)

SOLUTION (f)

Question

⇒ \( \frac {1}{a^{4x}} \scriptsize \left [a^{4x} \: -\: (a^{-2x})^0\right ]\)

Solution

From the Laws of Indices

\(\scriptsize X^0 = 1 \: \therefore \:  (a^{-2x})^0 = 1 \)

= \( \frac {1}{a^{4x}} \scriptsize \left (a^{4x} \: – \:  1 \right )\)

Open the bracket

⇒ \( \frac {a^{4x}}{a^{4x}} \: – \:\frac {1}{a^{4x}} \)

⇒ \( \scriptsize 1 \: – \:  \normalsize \frac {1}{a^{4x}} \)

or

\(\frac{a^{4x}}{a^{4x}} \: – \: \frac {1}{a^{4x}} \\ = \frac {a^{4x} \:-\: 1}{a^{4x}} \)

SOLUTION (g)

Question

⇒ \(\left (\frac {9a^2}{25}\right)^{^{- \frac {1}{2}}}\)

Solution

invert the fraction and change the negative index to positive

= \(\left (\frac {25}{9a^2}\right)^{^{ \frac {1}{2}}}\)

Note: 25 = 5 x 5 = \( \scriptsize 5^2\) and 3a x 3a \( \scriptsize = 3a^2= 9a^2\)

∴  \(\left (\frac {25}{9a^2}\right)^{ \frac {1}{2}} \\= \left(\frac {5^2}{\left(3a\right)^2}\right )^{ \frac {1}{2}}\)

⇒ \( \left(\frac {5}{(3a)}\right)^{ 2\: \times \: \frac {1}{2}}\)

= \(  \frac{5}{3a}\)

SOLUTION (h)

Question

⇒ \( \frac {-x^3}{(-x^6)( -x)}\scriptsize \: \times \: x^4 \)

Solution

multiply the numerator by xand open the brackets in the denominator

⇒ \( \frac {-x^3 \: \times \: x^4}{-x^6 \: \times \:  -x^1} \)

Using laws of logarithm \( \scriptsize x^a \: \times \: x^b = x^{a+b} \)

Alse Note: \( \scriptsize -x \: \times \: -x = +x \: or \: x \)

∴ \( \frac {-x^{3+4}}{x^{6 + 1}} \\ = \frac {-x^7}{x^7}\)

Using laws of logarithm \(\frac {x^a}{x^b} \scriptsize = x^{a-b} \)

⇒ \( \scriptsize -x^{7 – 7} \)

= \( \scriptsize -x^{0} \\ =  \scriptsize -1 \)

SOLUTION (i)

Question

⇒ \( \left(\frac {8y^3}{(27p^6)}\right )^{^{- \frac {2}{3}}}\)

Solution

Invert the fraction and change the negative index to positive index.

i.e \( \left (\frac {27p^6}{8y^3}\right )^{^{\frac {2}{3}}}\)

⇒ \(\left (\frac {3^3p^6}{2^3y^3}\right)^{^{\frac {2}{3}}}\)

⇒ \( \frac {3^{^{\left(3 \: \times \:  \frac{2}{3}\right) }} \: \times \: p^{^{\left(6 \: \times  \: \frac{2}{3}\right )} }} {2^{^{\left(3 \: \times \:  \frac{2}{3}\right )}}\: \times \: y^{^{\left(3 \: \times \: \frac{2}{3}\right )}} }\)

⇒ \( \frac{3^2 \: \times \: p^4}{2^2 \:\times \: y^2}\)

This can be simplified further as

⇒ \(\left( \frac{3 p^2}{2y}\right)^{^2}\)

or

⇒ \(\left ( \frac{9 p^4}{4y^2}\right )\)

SOLUTION (j)

Question

⇒ \( \scriptsize 32 ^{-0.4}\)

Solution

Change the Decimal to a Fraction

= \( \scriptsize 32 ^{^{ \normalsize -\frac{4}{10}}}\)

⇒ \( \scriptsize \left(2^5\right ) ^{^{\normalsize  -\frac{2}{5}}}\)

⇒ \( \scriptsize 2^{^{\normalsize \left(5\: \times \: -\frac{2}{5}\right)}} \)

⇒ \( \scriptsize 2^{-2}\)

⇒ \( \frac{1}{2^2} = \frac{1}{4}\)

SOLUTION (k)

Question

⇒ \( \left(\frac{1}{8}\right) ^{^{ – 1 \frac{1}{3}}}\)

Solution

= \( \left(\frac{1}{8}\right) ^{^{- \frac{4}{3}}}\)

⇒ \( \left(\frac{8}{1}\right) ^{^{ \frac{4}{3}}}\)

⇒ \( \scriptsize(2^3)^{^{ \frac{4}{3}}} \\ \scriptsize = 2^{^{\normalsize 3 \: \times \: \frac{4}{3}}}\\ \scriptsize  = 2^4 \\ \scriptsize = 16\)

SOLUTION (l)

Question

⇒ \( \left(\frac {9}{4} \scriptsize a^6\right )^{ ^{-\normalsize 1.5}}\)

Solution

1.5 = \( \frac{3}{2}\)

⇒ \( \left(\frac {9}{4} \scriptsize a^6\right)^{ ^{\normalsize -\frac{3}{2}}}\)

invert the fraction and change the negative index to positive index

⇒ \( \left(\frac {4}{9a^6} \right ) ^{^{\normalsize \frac{3}{2}}}\)

⇒ \( \left(\frac {2^2}{3^2 a^6} \right) ^{^{\normalsize\frac{3}{2}}}\)

⇒ \( \frac {2^{^{\left(2 \: \times \: \frac{3}{2}\right)}}}{3^{^{\left(2\: \times \: \frac{3}{2}\right)}}\; a^{^{\left(6 \: \times \: \frac{3}{2}\right )}}} \)

⇒ \( \left(\frac {2^3}{3^3 a^9} \right)\)

= \( \left (\frac {2}{3 a^3} \right)^{^3}\)

or \(\left (\frac {8}{9 a^9} \right)\)

error: Alert: Content selection is disabled!!