Back to Course

SS1: MATHEMATICS - 1ST TERM

0% Complete
0/0 Steps
  1. Number Base System I | Week 1
    6Topics
    |
    2 Quizzes
  2. Number Base System II | Week 2
    3Topics
    |
    1 Quiz
  3. Number Base System III | Week 3
    2Topics
    |
    1 Quiz
  4. Modular Arithmetic I | Week 4
    2Topics
  5. Modular Arithmetic II | Week 5
    2Topics
  6. Modular Arithmetic III | Week 6
    3Topics
    |
    1 Quiz
  7. Indices I | Week 7
    2Topics
  8. Indices II | Week 8
    1Topic
    |
    1 Quiz
  9. Logarithms I | Week 9
    3Topics
  10. Logarithms II
    1Topic
    |
    1 Quiz
Lesson Progress
0% Complete

The basic principles of calculation using logarithms depend on the laws of indices.

Multiplication and Division:

Example 1

Use tables to work out the following:

1. 26.52 x 9.184

2. 912.4  ÷ 94.35

Solution

1st Method

1. 26.52 x 9.184

Using the tables

i.e \( \scriptsize 10^{1.4236} \: \times \: 10^{0.9360} \)

= \( \scriptsize 10^{1.4236 \:+ \:0.9630} \rightarrow \left(x^a \: \times \: x^b = x^{a \: + \:b} \right) \)

= \( \scriptsize 10^{2.3866}\)

Using the anti-log \( \scriptsize \rightarrow 2.436 \)

Answer = 243.6

2nd Method

Screen Shot 2021 11 01 at 5.18.41 PM

2. \( \scriptsize 912.4\: \div \: 53.55 \)

Using the tables

1st Method

i.e \( \scriptsize 10^{2.9602} \: \div \: 10^{1.7288} \)

= \( \scriptsize 10^{2.9602 \:- \: 1.7288} \rightarrow \left(x^a \: \div \: x^b = x^{a \: – \: b} \right) \)

Using the anti-log \( \scriptsize \rightarrow 5.355\)

Answer = 53.55

2nd Method

Screen Shot 2021 11 01 at 5.20.40 PM
back-to-top
error: