Back to Course

SS1: MATHEMATICS - 1ST TERM

0% Complete
0/0 Steps
  1. Number Base System I | Week 1
    6 Topics
    |
    2 Quizzes
  2. Number Base System II | Week 2
    3 Topics
  3. Number Base System III | Week 3
    2 Topics
    |
    1 Quiz
  4. Modular Arithmetic I | Week 4
    2 Topics
  5. Modular Arithmetic II | Week 5
    3 Topics
  6. Modular Arithmetic III | Week 6
    4 Topics
    |
    1 Quiz
  7. Indices I | Week 7
    3 Topics
    |
    1 Quiz
  8. Indices II | Week 8
    1 Topic
    |
    1 Quiz
  9. Logarithms I | Week 9
    3 Topics
  10. Logarithms II | Week 10
    4 Topics
    |
    1 Quiz



Lesson 9, Topic 3
In Progress

Worked Examples – Logarithms

Lesson Progress
0% Complete

Topic Content:

  • Worked Examples – Logarithms

Worked Examples 9.3.1:

Evaluate the following: (Try to work these examples out on your own using the laws of logarithms and then check the solutions by clicking ‘view solution’ )

(a) \( \scriptsize 3 \log 4 + \log 2\)

(b) \( \scriptsize 3 \log 2 + \log 20 \; – \log1.6\)

 

You are viewing an excerpt of this Topic. Subscribe Now to get Full Access to ALL this Subject's Topics and Quizzes for this Term!

Click on the button "Subscribe Now" below for Full Access!

Subscribe Now

Note: If you have Already Subscribed and you are seeing this message, it means you are logged out. Please Log In using the Login Button Below to Carry on Studying!

Responses

Your email address will not be published. Required fields are marked *

SOLUTION (a)

Question

⇒ \( \scriptsize 3 \log 4 + \log 2\)

Solution

Using the laws of logarithm

:> \(\scriptsize \log_{a} \left ( M^{n} \right ) = n \log_{a} M \)

⇒\( \scriptsize 3 \log 4 = \log 4^3 \)

⇒ \( \scriptsize \log 4^3 \: +\:  \log 2\)

\(\scriptsize \log_a M + \log_aN = \log_a MN  \)

⇒ \( \scriptsize\log 4^3 \: +\:  \log 2 \\ \scriptsize =  \log 4^{3} \: \times \:  2 \)

=  \( \scriptsize \log 64 \: \times \: 2 \)

= \( \scriptsize \log 128 \)

SOLUTION (b)

Question

⇒ \( \scriptsize 3 \log 2 \: + \: \log 20 \:  – \:  \log1.6\)

Solution

⇒ \( \scriptsize  \log 2^3 \: + \:  \log 20  \: – \: \log \normalsize \frac {16}{10}\)

Laws of Logarithm

⇒\( \scriptsize \log_a MN = \log_a M \: +\: \log_aN \\  \)

⇒ \( \scriptsize \log_a \normalsize\left (\frac{M}{N} \right ) \scriptsize = \log_a M \: – \: \log_aN \)

⇒ \( \scriptsize  \log \normalsize \frac {2^3 \: \times \: 20}{ \frac {16}{10}}\)

⇒ \( \scriptsize  \log \normalsize \frac {8 \: \times \: 20}{ \frac {16}{10}}\)

⇒ \( \scriptsize  \log  \left [ \scriptsize  8 \: \times \:  20 \:\times \: \normalsize \frac {10}{16} \right ] \)

⇒ \( \scriptsize  \log \left ( \scriptsize 10 \: \times \: 10 \right)  \)

⇒ \( \scriptsize  \log 10^2 \\ \scriptsize =  2 \log_{10} 10 \)

From Laws of logarithm 

⇒ \(\scriptsize \log_{a}a = 1 \\ \scriptsize\therefore \log_{10} 10 = 1 \)

= 2 x 1 = 2

SOLUTION (c)

Question

⇒ \( \scriptsize 2 \: –  \: 2 \log 5\)

Solution

⇒ \( \scriptsize 2 \: \times \: 1 – \: 2 \log 5\)

⇒ \( \scriptsize 2 \log 10 \: –  \: \log 5^2\)

⇒ \( \scriptsize  \log 100 \: – \: \log 25\)

⇒ \( \scriptsize \log \normalsize \left ( \frac {100}{25} \right)\)

⇒ \( \scriptsize  \log 4\)

SOLUTION (d)

Question

⇒ \( \frac {\log 8 \; – \;\log 4}{\log 6 \; – \; \log 3} \)

Solution

⇒ \( \frac {\log \frac{8}{4}}{\log \frac{6}{3}} \)

⇒ \( \frac {\log 2}{\log 2}  \scriptsize =  1 \)

SOLUTION (e)

Question

⇒ \( \frac{1}{2}\scriptsize \log \normalsize \frac{25}{4}\scriptsize \: – \:2  \log \normalsize \frac{4}{5} \scriptsize \:+\: \log \normalsize \frac{320}{125} \)

Solution

⇒ \(\scriptsize \log \normalsize \left ( \frac{25}{4}\right)^{\frac{1}{2}} \scriptsize \: – \: \log \normalsize \left ( \frac{4}{5}\right)^{2} \scriptsize\: + \: \log \normalsize \frac{320}{125} \)

⇒ \(\scriptsize \log \normalsize \frac{\sqrt{25}}{\sqrt{4}} \scriptsize \: – \: \log \normalsize \left ( \frac{4}{5}\right)^{2} \scriptsize\: + \: \log \normalsize \frac{320}{125} \)

⇒ \(\scriptsize \log \normalsize \frac{5}{2} \scriptsize\: -\: log \normalsize \frac{16}{25} \scriptsize \:+ \:\log \normalsize \frac{320}{125} \)

⇒ \(\scriptsize \log  \left [\normalsize \frac{5}{2}\: \div \:  \normalsize \frac{16}{25} \: \times \: \normalsize \frac{320}{125} \right] \)

⇒ \(\scriptsize \log  \left [\normalsize \frac{5}{2} \: \times \:  \normalsize \frac{25}{16}\:  \times \:   \normalsize \frac{320}{125} \right] \)

⇒ \(\scriptsize \log  \left [ \normalsize \frac{25}{16}\:  \times \:   \normalsize \frac{160}{25} \right] \)

= \(\scriptsize \log_{10}  10  \\ \scriptsize = 1\)

SOLUTION (f)

Question

⇒ \( \scriptsize \log \normalsize \frac{30}{16}\scriptsize \: – \: 2 \log \normalsize \frac{5}{9} \scriptsize \:+ \: \log \normalsize \frac{400}{243} \)

Solution

⇒ \( \scriptsize \log \normalsize \frac{30}{16}\scriptsize \: – \: \log \normalsize \left ( \frac{5}{9} \right)^2 \scriptsize \: +\: \log \normalsize \frac{400}{243} \)

⇒ \( \scriptsize \log \normalsize \frac{30}{16}\scriptsize \: – \: \log \normalsize \frac{25}{81} \scriptsize \:+ \: \log \normalsize \frac{400}{243} \)

⇒ \( \scriptsize \log \left [\normalsize \frac{30}{16} \scriptsize \: \div \: \normalsize  \frac{25}{81} \scriptsize  \: \times \: \normalsize  \frac{400}{243}\right] \)

⇒ \( \scriptsize \log \left [\normalsize \frac{30}{16} \scriptsize \: \times \:  \normalsize\frac{81}{25} \scriptsize  \: \times \:  \normalsize  \frac{400}{243}\right] \)

= \( \scriptsize \log_{10} 10\\ \scriptsize  = 1 \)

SOLUTION (g)

Question

⇒ \( \scriptsize \log_{36} 6\; +\; log_3 27\; -\; log_9 3 \)

Solution

Change the log to base 3

Change of base rule \( \scriptsize \log_{b} (a) = \normalsize \frac{\log_x (a)}{\log_x (b)} \)

⇒ \( \scriptsize \log_{36} (6) = \normalsize \frac{\log_3 (6)}{\log_3(36)} \)

⇒ \( \scriptsize \log_{9} (3) = \normalsize \frac{\log_3 (3)}{\log_3 (9)} \)

Substitute these values into the original equation

⇒ \( \frac{\log_3 (6)}{\log_3(36)} \scriptsize \: +\: \log_3 27\: -\: \normalsize \frac{\log_3 (3)}{\log_3 (9)} \)

⇒ \( \frac{\log_3 (6)}{\log_3(6^2)} \scriptsize \: +\: \log_3 27\: -\: \normalsize \frac{\log_3 (3)}{\log_3 (3^2)} \)

⇒ \( \frac{\log_3 (6)}{\log_3(6^2)} \scriptsize \: +\: \log_3 3^3\: -\: \normalsize \frac{\log_3 (3)}{\log_3 (3^2)} \)

⇒ \( \frac{\log_3 (6)}{\log_3(6^2)} \scriptsize \: +\: 3\log_3 3\: -\: \normalsize \frac{\log_3 (3)}{\log_3 (3^2)} \)

⇒ \( \frac{\log_3 (6)}{2\log_3(6)} \scriptsize \: +\: 3 \: \times \: 1\: -\: \normalsize \frac{\log_3 (3)}{2\log_3 (3)} \)

Note: \(\normalsize  \frac{\log_3 (6)}{\log_3(6)} \scriptsize = 1 \: and \: \normalsize \frac{\log_3 (3)}{\log_3 (3)} \scriptsize = 1  \)

⇒ \( \normalsize \frac {1}{2} \scriptsize  \: + \: 3 \:  –  \: \normalsize \frac{1}{2}\)

⇒ \( \scriptsize 3 \normalsize \frac {1}{2}  \:  –  \: \normalsize \frac{1}{2}\)

= 3

SOLUTION (h)

Question

⇒ \( \scriptsize \log_{3} 64\: \times \: \log_8 243 \)

Solution

Change the log to base 3

Change of base rule: \( \scriptsize \log_{b} (a) = \normalsize \frac{\log_x (a)}{\log_x (b)} \)

⇒ \( \scriptsize \log_{8} (243) = \normalsize \frac{\log_3 (243)}{\log_3(8)} \)

Substitute these values into the original equation

⇒ \( \scriptsize \log_{3} 64\: \times \: \normalsize \frac{\log_3 (243)}{\log_3(8)} \)

⇒ \( \scriptsize \log_{3} 8^2\: \times \: \normalsize \frac{\log_3 (3^5)}{\log_3(8)} \)

⇒ \( \scriptsize 2\log_{3} 8\: \times \: \normalsize \frac{5\log_3 (3)}{\log_3(8)} \)

The logs can cancel out and \( \scriptsize \log_3 3 = 1 \)

= 2 x 5 x 1 = 10

error: Alert: Content selection is disabled!!