Topic Content:
- Calculations using Logarithms
The basic principles of calculation using logarithms depend on the laws of indices.
Example 10.3.1 – Multiplication and Division:
Use tables to work out the following:
1. 26.52 × 9.184
2. 912.4 ÷ 94.35
Solution
1st Method
1. 26.52 × 9.184
Using the tables
i.e \( \scriptsize 10^{1.4235} \: \times \: 10^{0.9630} \)
= \( \scriptsize 10^{1.4235 \:+ \:0.9630} \rightarrow \left(x^a \: \times \: x^b = x^{a \: + \:b} \right) \)
= \( \scriptsize 10^{2.3865}\)
Using the anti-log \( \scriptsize \rightarrow 2.435 \)
Answer = 243.5
2nd Method
No | Log |
26.52 | 1.4235 |
9.184 | + 0.9630 |
2.3865 | |
Antliog of 0.3865 = 2.435 | |
102 × 2.435 | |
Ans = 243.5 |
2. \( \scriptsize 912.4\: \div \: 53.55 \)
Using the tables
1st Method
i.e \( \scriptsize 10^{2.9602} \: \div \: 10^{1.7288} \)
= \( \scriptsize 10^{2.9602 \:- \: 1.7288} \rightarrow \left(x^a \: \div \: x^b = x^{a \: – \: b} \right) \)
= \( \scriptsize 10^{1.2314} \) Using the anti-log \( \scriptsize \rightarrow 1.704\)
Answer = 17.04
2nd Method
No | Log |
912.4 | 2.9602 |
53.55 | –1.7288 |
1.2314 | |
Antliog of 0.2314 = 1.704 | |
101 × 1.704 | |
Ans = 17.04 |