Back to Course

SS1: MATHEMATICS - 1ST TERM

0% Complete
0/0 Steps
  1. Number Base System I | Week 1
    6 Topics
    |
    2 Quizzes
  2. Number Base System II | Week 2
    3 Topics
  3. Number Base System III | Week 3
    2 Topics
    |
    1 Quiz
  4. Modular Arithmetic I | Week 4
    2 Topics
  5. Modular Arithmetic II | Week 5
    3 Topics
  6. Modular Arithmetic III | Week 6
    4 Topics
    |
    1 Quiz
  7. Indices I | Week 7
    3 Topics
    |
    1 Quiz
  8. Indices II | Week 8
    1 Topic
    |
    1 Quiz
  9. Logarithms I | Week 9
    3 Topics
  10. Logarithms II | Week 10
    4 Topics
    |
    1 Quiz
  • excellence
  • Follow

Lesson Progress
0% Complete

Topic Content:

  • Division of Number Bases
  • Long Division Method
  • Alternative Method

Example 2.2.1:

Divide the following numbers:

a. 1110two ÷ 111two
b. 1010two  ÷ 10two
c. 1101001two ÷ 101two

Solution

The long division method is one of the most efficient and easiest ways to solve binary division.

Remember these rules

  • The dividend is divided by the divisor, and the answer is the quotient.
  • Compare the divisor to the first digit in the dividend. If the divisor is the larger number, keep adding digits to the dividend until the divisor is the smaller number. (For example, if calculating 156 ÷ 2, we would compare 2 and 1, note that 2 > 1, and compare 2 to 15 instead.)

a. 1110two ÷ 111two

Screenshot 2023 09 14 at 01.55.29

Explanation

111 is the divisor, 1110 is the dividend.

Compare the divisor (111) to the dividend (1110) from the first digit.

111 > 1 so we carry on (or add a 0)
111 > 11 so we carry on (or add a 0)
111 = 111, This can be divided. We write 1 in the quotient.

Like standard division, we then multiply the divisor (111) by 1 and then find the remainder by subtracting the result.

The remainder is 0 and the number brought down is 0. What we have now is 00.

We then try and divide again. 111 > 00 so we add a 0 to the quotient.

0010two = 10two

Answer = 10two

b. 1010two  ÷ 10two

Screenshot 2023 09 14 at 02.00.33 1

Answer = 101two

c. 1101001two ÷ 101two

Screenshot 2023 09 14 at 02.03.33

Answer = 10101two

Example 2.2.2:

(i) \( \scriptsize 1111.01_2 \div 1101_2 \)  
(ii) \( \scriptsize 242_5 \div 14_5 \)
(iii) \( \scriptsize 83A6{16} \: \div \: 6_{16} \)

In Binary Division, another method you can use is to first convert to base 10, do the division, and then convert the answer to the given base.

(i) \( \scriptsize 1111.01_2 \div 1101_2 \)  

Solution

convert to base 10

i.e. \( \scriptsize 1111.01_{2} \\ \scriptsize = 1 \: \times \: 2^3 \:+\: 1 \:\times\: 2^2 \:+ \:1 \: \times \: 2^1 \: +\: 1 \: \times \: 2^0 \\ \scriptsize \: + \: 0 \: \times \: 2^{-1}\: + \: 1 \: \times\: 2^{-2}\)

⇒ \( \scriptsize 8 \: + \: 4 \: + \: 2 \: + \: 1 \: + \: 0 \: + \: 0.25 = 15.25 \)

\( \scriptsize 1101_{2} \\ \scriptsize = 1 \:\times \: 2^3 \: + \: 1 \: \times\: 2^2 \: + \: 1 \: \times \: 2^1 \: + \: 1 \: \times \: 2^0 \)

\( \scriptsize 8 \: + \: 4 \: + \: 2 \: + \: 1 = 13 \)

∴ \( \scriptsize 1111.01_2 \div 1101_2 \equiv 15.25 \div 13 \)

= \( \scriptsize 1.173 \)

Convert 1.173 to base 2

Whole number part = 1

Screenshot 2023 09 14 at 01.12.13

⇒ 0.173 = 0.0012

Therefore, \( \scriptsize 1.173 = 1.001_2 \)

(ii) \( \scriptsize 242_5 \div 14_5 \)  

Solution

First, convert the given numbers to base 10.

⇒ \( \scriptsize 2\: \times \: 5^2 \: +\: 4 \: \times \: 5^1 \: + \: 2 \: \times \: 5^0 = 72_{10}\)

⇒ \( \scriptsize 1 \:\times \:5^1 \:+ \:4 \:\times\: 5^0 = 9_{10} \)

⇒ \( \therefore \frac {72_{10}}{9_{10}} \scriptsize = 8_{10} \)

We then convert 810 back to base 5

Screenshot 2023 09 14 at 01.14.53

Therefore, \( \scriptsize 8_{10} = 13_{5} \)

(iii) \( \scriptsize 83A6_{16} \: \div \: 8_{16} \)

Solution

Convert both numbers to base 10

\( \scriptsize 83A6_{16} \: \div \: 8_{16} \\ \scriptsize = 8 \: \times \: 16^3 \: + \: 3 \: \times \: 16^2 \: + \: 10 \: \times \: 16^1 \: + \: 6 \: \times \: 16^0 \\ \scriptsize = 32768 \: + \: 768 \: + \: 160 \: + \: 6 \\ \scriptsize = 33,702\)

\( \scriptsize 8_{16} \\ \scriptsize = 8 \: \times \: 16^0 \\ \scriptsize = 8 \: \times \: 1 \\ \scriptsize = 8 \)

i.e \( \scriptsize 83A6_{16} \: \div \: 8_{16} \equiv 33,702 \: \div \: 8 \\ \scriptsize = 4212.75 \)

Convert back to base 16

Whole number part

Screenshot 2023 09 14 at 01.18.32

Decimal part

Screenshot 2023 09 14 at 01.25.49

Whole number part = \( \scriptsize 1074 \)

Decimal part = \( \scriptsize C \)

\( \scriptsize \therefore \: Answer = 1074.C_{16} \)
Subscribe
Notify of
guest
5 Comments
Oldest
Newest
Inline Feedbacks
View all comments
Omoniyi Oluwabunmi H.
Omoniyi Oluwabunmi H.
2 years ago

This is cool.

2 years ago

Easy to understand ☺️

Obarifunemi
2 years ago

pls how did you get 1.173 in example 2 question i ???

Obarifunemi
Reply to  Ehi Etomi
2 years ago

Thanks

avatar
5
0
Would love your thoughts, please comment.x
()
x