Back to Course

SS1: MATHEMATICS - 2ND TERM

0% Complete
0/0 Steps



Lesson Progress
0% Complete

To transpose a formula means to re-arrange it so that a different letter becomes the subject.

For example, in the formula

\( \scriptsize R = ρ \normalsize \frac{l}{A}\) where R is the subject 

We can also have

\( \scriptsize ρ = \normalsize \frac{RA}{l}\)

Example 4.1.1:

Make x the subject of the formulae in the following:

(a) \(\scriptsize t =\normalsize \frac {3P}{x} \scriptsize \; + \; s \) (WAEC)

 

You are viewing an excerpt of this Topic. Subscribe Now to get Full Access to ALL this Subject's Topics and Quizzes for this Term!

Click on the button "Subscribe Now" below for Full Access!

Subscribe Now

Note: If you have Already Subscribed and you are seeing this message, it means you are logged out. Please Log In using the Login Button Below to Carry on Studying!

avatar

Responses

Your email address will not be published. Required fields are marked *

SOLUTION (a)

⇒ \(\scriptsize t =\normalsize \frac {3P}{x} \scriptsize \; + \; s \)

Solution:

Transfer “s” to the left hand side (L.H.S)

⇒ \(\; \; \; \scriptsize t \; – \; s = \normalsize \frac {3P}{x} \)

Invert both sides

⇒ \( \frac {1}{ t \; – \; s}\scriptsize =  \normalsize \frac {x}{3P} \)

Multiply both sides by 3P

⇒ \(\; \; \; \scriptsize 3P \; \times \;  \normalsize \frac {1}{ t \; – \; s} \scriptsize  = 3P \; \times \; \normalsize \frac {x}{3P} \)

⇒ \(\; \; \; \frac {3P}{t \: –  \: s}  = x  \)

Answer: \( \therefore \scriptsize x =  \normalsize \frac {3P}{t \: –  \: s} \)

SOLUTION (b)

\( \frac {1}{y} \;+\; \frac {1}{x} = \frac {1}{z} \)

 

Find the LCM on the left hand side (LHS)….LCM = \( \scriptsize x \; \times \;  y = xy \)

\( \frac {x \:+ \:y}{xy}  = \frac {1}{z} \)

 

Cross multiply

⇒ z(x + y ) = xy

Expand the brackets

⇒ xz + zy = xy

Collect like terms

⇒ xz – xy = -zy

Factorise out x

    x(z – y) = -zy

Divide both sides by (z – y)

\( \frac {x(z\:  – \: y)}{z\:  – \:  y}  = \frac {-zy}{z \:  – \:  y} \)

Answer: \(\therefore \scriptsize x =  \normalsize \frac {-zy}{z \:  – \:  y} \)

SOLUTION (c)

⇒ \(\scriptsize V = \pi h^2 \left ( x\:  – \:\normalsize \frac {h}{3} \right)\)

 

Divide both sides by \(\scriptsize \pi h^2 \)

⇒ \(\frac{V}{\pi h^2} =\frac { \pi h^2 \left ( x\: – \:\frac {h}{3} \right)}{\pi h^2}\)

⇒ \(\frac{V}{\pi h^2} =\frac { \not{\pi}\not{ h^2} \left ( x\: – \:\frac {h}{3} \right)}{\not{\pi}\not{ h^2}}\)

\(\therefore \frac{V}{\pi h^2} = \left  ( \scriptsize x \: – \:\normalsize\frac {h}{3} \right)\)

 

Transfer \(\frac {h}{3}\)  to the Left Hand Side (LHS)

⇒ \(\frac{V}{\pi h^2} \; + \; \normalsize\frac {h}{3} = \scriptsize x\)

\( \therefore \scriptsize x = \normalsize  \frac{V}{\pi h^2} \scriptsize \; + \; \normalsize\frac {h}{3} \)

 

or \(\scriptsize x = \normalsize  \frac {3V \: +  \: \pi h^3 }{3 \pi h^2} \)

SOLUTION (d)

⇒ \( \scriptsize T = \normalsize \frac{mu^2}{x} \scriptsize \: – \: 5mg \)

 

Transfer – 5mg to the left hand side (LHS)

⇒ \( \scriptsize T + 5mg = \normalsize \frac{mu^2}{x} \)

invert both sides and multiply by \( \scriptsize mu^2 \)

⇒ \( \frac {1}{T  \;+ \;5mg}\scriptsize \; \times \; mu^2  = \normalsize \frac{x}{mu^2} \scriptsize \; \times \; mu^2 \)

 

Answer: \( \scriptsize x = \normalsize \frac{mu^2}{T \;+ \;5mg}\)

SOLUTION (e)

⇒ \( \scriptsize H = \normalsize \frac{m(x^2 \;-\; y^2)}{2gz} \)

 

Multiply both sides by 2gz

\( \scriptsize H \; \times  \;2gz = \normalsize \frac{m(x^2 \;-\; y^2)}{2gz} \scriptsize \: \times \: 2gz \)

 

\(\scriptsize 2Hgz = m ( x^2 \; – y^2) \)

 

Divide both sides by m

\(  \frac{2Hgz}{m} = \frac{m(x^2 \;-\;y^2)}{m}  \)

 

\( \frac {2Hgz}{m} =  \scriptsize x^2 \; – \; y^2 \)

 

Transfer – y2 to the left hand side (LHS)

⇒ \(\; \; \;  \frac {2Hgz}{m} \; +\;  \scriptsize y^2 =  x^2 \)

Take the square root of both sides

⇒ \( \; \; \; \sqrt{\frac {2Hgz}{m}\scriptsize \: + \: y^2}  = \sqrt{ x^2} \)

⇒ \( \; \; \; \scriptsize x = \normalsize \sqrt{\frac {2Hgz}{m}\scriptsize \: + \: y^2}  \)

or  \( \; \; \;  \scriptsize x =  \normalsize  \sqrt{\frac {2Hgz \: + \; my^2} {m}}  \)

SOLUTION (f)

⇒ \( \scriptsize I = \normalsize \frac{xE}{R \; + \; xr} \)

 

Cross multiply

\( \scriptsize I \; \times \; (R \; + \; xr) = xE \)

 

Expand the bracket

\( \scriptsize I R \; + \; I xr = xE \)

 

Collect like terms (Remember, we are looking for x)

\( \scriptsize I R = xE \; – \; I xr \)

 

Factorise out x on the Right-hand side (RHS)

\( \scriptsize I R = x(E \; – \; I r) \)

 

Divide both sides by (E – Ir)

⇒ \(\; \;  \frac{ I R}{E\; -\; Ir} = \frac {x(E \; – \; I r)}{E \;- \;Ir}\)

∴  \( \; \; \scriptsize  x = \normalsize \frac{ I R}{E \;- \;Ir} \)

SOLUTION (g)

\( \scriptsize I = \normalsize \frac{E}{\sqrt {x^2 \; + \; w^2l^2}} \)

 

Take the square of both sides

\( \scriptsize I^2 = \normalsize \frac{E^2}{x^2 \; + \; w^2l^2} \)

 

Cross multiply

\( \scriptsize I^2  \; \times\; (x^2 \; + \; w^2l^2) = E^2 \)

 

Expand the bracket

\( \scriptsize I^2 x^2 \; + \; I^2w^2l^2 = E^2 \)

 

Transfer I2W2L2 to the right-hand side (RHS)

\( \scriptsize I^2 x^2 = E^2 \;  – \; I^2w^2l^2  \)

 

Divide both sides by I2

\(  \frac{I^2 x^2}{I^2} = \frac{E^2 \;  – \; I^2w^2l^2 }{I^2} \)

 

\(  \scriptsize x^2  = \normalsize \frac{E^2 \;  – \; I^2w^2l^2 }{I^2} \)

 

Take the square root of both sides

\(  \scriptsize \sqrt {x^2} = \normalsize \sqrt{\frac{E^2 \;  – \; I^2w^2l^2 }{I^2}} \)

 

⇒ \(  \scriptsize \sqrt {x^2} = \normalsize \sqrt{\frac{E^2 \;  – \; (Iwl)^2 }{I^2}} \)

⇒ \( \therefore \scriptsize x = \normalsize \sqrt{\frac{E^2 \;  – \; (Iwl)^2 }{I^2}} \)

or \( \scriptsize x = \normalsize \frac {1}{I} \scriptsize \sqrt{(E \;  – \; Iwl)(E \;  + \; Iwl)} \)

SOLUTION (h)

⇒ \( \scriptsize P = \sqrt {Qx \normalsize \frac{1\; + \; 3t}{x} } \)

 

Take the square of both sides

⇒  \( \; \; \; \scriptsize P^2 = Qx \left (1 \; + \; \normalsize \frac{3t}{x}\right ) \)

Find the LCM for the RHS

⇒  \( \; \; \; \scriptsize P^2 = Qx \normalsize\left( \frac{x \; + \; 3t}{x} \right)\)

⇒  \( \; \; \; \scriptsize P^2 = \normalsize \frac {Qx}{x}  \scriptsize \left( {x \; + \; 3t} \right)\)

⇒  \( \therefore \scriptsize P^2 =  Q( x  \; + \; 3t)\)

Expand the bracket

⇒ \( \scriptsize P^2 =  Q x  \; + \; 3Qt\)

Transfer 3Qt to the left hand side (LHS)

⇒ \( \scriptsize P^2 \; – \; 3Qt =  Q x  \)

Divide both sides by Q

⇒ \( \frac {P^2 \; – \; 3Qt}{Q} =  \frac{Q x}{Q}  \)

\( \therefore \scriptsize x = \normalsize \frac {P^2 \; – \; 3Qt}{Q}  \)

error: Alert: Content selection is disabled!!