Shape | Perimeter | Area |
---|---|---|
Rectangle![]() | Perimeter = 2(l + b) | Area = l x b = lb |
Parallelogram![]() | Perimeter = 2(a + b) | Area = b x h = ab sinθ |
Trapezium![]() | Perimeter = a + b + c + l | Area = \( \frac{1}{2} \scriptsize (a +b) \: \times \: h\) |
Triangle![]() | Perimeter = a + b + c | Area = \( \frac{1}{2} \scriptsize \: \times \:b \: \times \: h \) Area = \( \frac{1}{2} \scriptsize ab \: Sin C \) Area = \( \frac{1}{2} \scriptsize ac \: Sin B \) Area = \( \frac{1}{2} \scriptsize bc \: Sin A \) |
Square![]() | Perimeter = 4d | Area = \( \scriptsize d^2 \) |
Circle![]() | Perimeter = \( \scriptsize 2\pi r = \pi d \) | Area = \( \scriptsize \pi r^2 \) |
Example 1:
The diagram below shows the altitudes \( \scriptsize \overline{QT} \: and \: \overline{PM} \: of \: \Delta PQR \)
If |QR| = 8cm, |PR| = 7cm and |QT| = 4cm, what is |PM|? (WAEC)

Solution:
There are two different triangles with different heights and their areas are equal.


Area of Triangle in figure 2 is equal to the area of triangle in figure 3 which is the area of ΔPQR
Given ΔPQR
Area of ΔPQR =
\( \normalsize \frac {1}{2} \scriptsize \: \times \: \: PR \: \times \:QT = \normalsize \frac {1}{2} \scriptsize \: \times \: QR \: \times \: PM \)⇒ \( \normalsize \frac {1}{2} \scriptsize \: \times \: 7 \: \times \: 4 = \normalsize \frac {1}{2} \scriptsize \: \times \: 8 \: \times \: PM \)
\( \scriptsize 14 = 4PM \)PM = \( \frac{14}{4} \\ = \frac{7}{2} \\ = \scriptsize 3.5 \: cm \)
|PM| = 3.5cm
Example 2:
The figure below shows PQRS is a parallelogram, HSR is a straight line, and HPQ = 90o. If |HQ| = 10cm and |PQ| = 6cm, what is the area of the parallelogram? (WAEC)

Consider right-angled \( \scriptsize \Delta HPQ \)

We know |HQ| = 10cm and |PQ| = 6cm. First thing we do is calculate |HP|
Using Pythagoras theorem
\( \scriptsize HQ^2 = HP^2 \: + \: PQ^2 \) \( \scriptsize HP^2 = HQ^2 \: – \: PQ^2 \) \( \scriptsize HP = \sqrt{HQ^2 \: – \: PQ^2} \) \( \scriptsize HP = \sqrt{10^2 \: – \: 6^2} \) \( \scriptsize HP = \sqrt{100 \: – \: 36} \) \( \scriptsize HP = \sqrt{64} \) \( \scriptsize |HP| = 8 \: cm\)Area of PQRS = base x perpendicular height
The base = PQ = SR = 6cm (as opposite sides are equal)
Height = |HP| = 8cm
Therefore, Area of PQRS = 6cm x 8cm
Area of PQRS = 48cm2
Responses