Topic Content:
- Definition of Area Expansivity
- Calculations on Area Expansivity
When substances are heated, there is an increase in length, breadth and height, hence area and volume also increases.
An increase in area of a solid when heated is called area or superficial expansivity.
Therefore;
Area Expansivity = β
\(\scriptsize (β) = \normalsize \frac {Increase \: in \: Area}{Original \: Area \: \times \: Temperature \: Change}\)\(\scriptsize β = \normalsize \frac {A_2 \: – \: A_1}{A_1 \: \times \: (\theta_2 \: – \: \theta_1)}\)
A2 = New area
A1 = Initial/Original area
θ2 = New temperature
θ1 = Original temperature
From the equation
A2 – A1 = β A1( θ2 – θ1)
A2 = A1 + β A1( θ2 – θ1)
or
A2 = A1 (1 + β(θ2 – θ1))
Area expansivity = 2 * Linear expansivity
β = 2α ( Proof of The Relationship between Linear Expansivity and Area Expansivity)
The S.I unit is per kelvin \( \scriptsize K^{-1} \) or per degree Celsius \( \scriptsize ^{०} C^{-1} \)
Example 10.3.1:
Calculate the area expansivity of a metal plate whose area at 36°C is 0.25 m2 and 1.15 m2 at 56.2 °C.
Solution
Values given:
Area expansivity β = ?, A1 = 0.25m2 , A2 = 1.15m2 , θ1 = 36°C, θ2 = 56.2°C
Formula for area expansivity β
\(\scriptsize β = \normalsize \frac {A_2 \: – \: A_1}{A_1 \: \times \: (\theta_2 \: – \: \theta_1)}\) |
⇒ \(\scriptsize β = \normalsize \frac {1.15\: – \: 0.25}{0.25 \: \times \: (56.2 \: – \: 36)}\)
⇒ \(\scriptsize β = \normalsize \frac {0.9}{0.25 \: \times \: 20.2}\)
⇒ \(\scriptsize β = \normalsize \frac {0.9}{5.05}\)
⇒ \(\scriptsize β = 0.178 K^{-1}\)