Back to Course

SS1: PHYSICS – 1ST TERM

0% Complete
0/0 Steps
  1. Introduction to Physics | Week 1
    4 Topics
    |
    1 Quiz
  2. Measurement I | Week 2
    3 Topics
    |
    1 Quiz
  3. Measurement II | Week 3
    6 Topics
    |
    1 Quiz
  4. Motion | Week 4
    5 Topics
    |
    1 Quiz
  5. Velocity-Time Graph | Week 5
    4 Topics
    |
    1 Quiz
  6. Causes of Motion | Week 6
    5 Topics
    |
    1 Quiz
  7. Work, Energy & Power | Week 7
    3 Topics
  8. Energy Transformation / Power | Week 8
    3 Topics
    |
    1 Quiz
  9. Heat Energy | Week 9
    5 Topics
    |
    1 Quiz
  10. Linear Expansion | Week 10
    7 Topics
    |
    1 Quiz
  • excellence
  • Follow

Lesson Progress
0% Complete

Topic Content:

  • Definition of Cubic Expansivity
  • Calculations on Cubic Expansivity

Cubic or volume expansivity is the increase in volume per unit volume per degree rise in temperature. The S.I unit is k-1

Volume/cubical expansivity, = γ

\(\scriptsize (γ) = \normalsize \frac {increase \: in \: Volume}{Original \: Volume \: \times \: temperature \: rise}\)

\(\scriptsize \gamma = \normalsize \frac {V_2 \: – \: V_1}{V_1 \: \times \: (\theta_2 \: – \: \theta_1)}\) 

V2 = New volume, V1 = Original Volume

 Î¸2 = New temperature, θ1 = Original temperature

From the equation above we have

\( \scriptsize V_2 \: – \: V_1 = \gamma V_1(\theta_2 \: – \: \theta_1)\)

\( \scriptsize V_2 = V_1 \: + \: \gamma V_1(\theta_2 \: – \: \theta_1)\)

or

\( \scriptsize V_2 = V_1(1 \: + \: \gamma (\theta_2 \: – \: \theta_1)) \)

Cubic expansivity = 3 Linear expansivity

\( \scriptsize \gamma = 3 \alpha \) (Proof of The Relationship between Linear Expansivity and Cubic Expansivity)

Example 10.4.1:

A piece of mass 170 kg has its temperature raised from 0°C to 30°C. Calculate its increase in volume, given the density of brass at 0°C as 8.5 × 103 Kgm-3 and its cubic expansivity as 57 × 10-4 K-1

Solution

 Mass = 170 kg

Original temperature  Î¸1 = 0°C

New temperature  Î¸2 =  30°C

density of brass at 0°C = 8.5 × 103 Kgm-3

cubic expansivity = 57 × 10-4 K-1

change in temperature, Δθ = θ2 – θ1 = 30°C – 0°C = 30°C

To calculate the increase in volume we need to calculate V1 and V2

Step 1: Calculate volume V1

V1, volume at temperature 0°C is unknown but the mass and density of the object at temperature 0°C are given.

Use the Values of mass & density to find V1

Density = \( \frac {mass}{volume}\)

8.5 × 103 = \( \frac {170}{volume}\)

Volume = \( \frac {170}{8.5 \: \times \: 10^{-3}}\)

V1 at temperature 0°C = 0.02 m3

Step 2: calculate V2

⇒ \(\scriptsize γ = \normalsize \frac {V_2 \: – \: V_1}{V_1 \: \times \: (\theta_2 \: – \: \theta_1)}\)  

⇒ \( \scriptsize V_2 \: – \:V_1 = V_1 \times (\theta_2 \: – \: \theta_1)γ \)  

⇒ \( \scriptsize V_2 = V_1 \times (\theta_2 \: – \: \theta_1)γ\: +\: V_1 \) 

⇒ \( \scriptsize V_2 = V_1 ( (\theta_2 \: – \: \theta_1)γ \: + \:1) \) 

⇒ \( \scriptsize V_2 = 0.02 ( 30\: \times\: 57\: \times\: 10^{-4}\: +\: 1) \) 

⇒ \( \scriptsize V_2 = 0.02 ( 0.171 \:+\: 1) \) 

⇒ \( \scriptsize V_2 = 0.02 (1.171) \) 

⇒ \( \scriptsize 0.02342 m^3 \) 

Increase in volume = V2 – V1

= 0.02342 – 0.02

= 0.00342 m3

Example 10.4.2:

A solid metal cube of side 15 cm is heated from 5°C to 50°C. if the linear expansivity of the metal is 1.8 × 10-4 K-1, calculate the increase in its volume.

Solution

Length of metal cube = 15 cm, initial temperature =  5°C, final temperature = 50°C 
Linear expansivity of the metal is 1.8 × 10-4 K-1.

To calculate the increase in Volume we need to calculate the values of V1 and V2. These values are not given in the question but we can calculate V1 using the length of the cube. The material is a cube and we are given only one side of the cube. Since a cube has equal sides, the length, breadth, and height of the cube are the same.  i.e l = b = h

cuboid e1606922401425

Therefore, Volume of cube at 5°C = l × b × h = 15 × 15 × 15 = 3,375 cm3

Cubic expansivity = 3 Linear expansivity

Cubic expansivity = 3 × 1.8 × 10-4 K-1

Cubic expansivity = 5.4 × 10-4 K-1

⇒ \(\scriptsize γ = \normalsize \frac {V_2 \: – \: V_1}{V_1 \: \times \: (\theta_2 \: – \: \theta_1)}\) 

Make V2 the subject of the formula

⇒ \(\scriptsize V_2 = V_1 ( (\theta_2 \: – \: \theta_1)γ \:+\: 1) \) 

⇒ \(\scriptsize V_2 = 3,375 ( (50 \: – \: 5)5.4 \; \times \: 10^{-4} \:+ \:1) \) 

⇒ \(\scriptsize V_2 = 3,375 ( (45)5.4 \: \times \: 10^{-4} \:+\: 1) \) 

⇒ \(\scriptsize V_2 = 3,375 ( 0.0234\:+\: 1) \) 

⇒ \(\scriptsize V_2 = 3,375 ( 1.0234) \) 

⇒ \(\scriptsize V_2 = 3,457 \: cm^3 \) 

 Increase in volume = V2 – V1  =  3,457 – 3,375 = 82 cm3

Subscribe
Notify of
guest
0 Comments
Oldest
Newest
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x