Topic Content:
- Definition of Cubic Expansivity
- Calculations on Cubic Expansivity
Cubic or volume expansivity is the increase in volume per unit volume per degree rise in temperature. The S.I unit is k-1
Volume/cubical expansivity, = γ
\(\scriptsize \gamma = \normalsize \frac {V_2 \: – \: V_1}{V_1 \: \times \: (\theta_2 \: – \: \theta_1)}\)
V2 = New volume, V1 = Original Volume
θ2 = New temperature, θ1 = Original temperature
From the equation above we have
\( \scriptsize V_2 \: – \: V_1 = \gamma V_1(\theta_2 \: – \: \theta_1)\) \( \scriptsize V_2 = V_1 \: + \: \gamma V_1(\theta_2 \: – \: \theta_1)\)or
\( \scriptsize V_2 = V_1(1 \: + \: \gamma (\theta_2 \: – \: \theta_1)) \)Cubic expansivity = 3 Linear expansivity
\( \scriptsize \gamma = 3 \alpha \) (Proof of The Relationship between Linear Expansivity and Cubic Expansivity)
Example 10.4.1:
A piece of mass 170 kg has its temperature raised from 0°C to 30°C. Calculate its increase in volume, given the densityDensity is the measurement of how tightly a material is packed together i.e. how closely the particles are packed in the material. The tighter the material is packed the more its... More of brass at 0°C as 8.5 × 103 Kgm-3 and its cubic expansivity as 57 × 10-4 K-1
Solution
Mass = 170 kg
Original temperature θ1 = 0°C
New temperature θ2 = 30°C
density of brass at 0°C = 8.5 × 103 Kgm-3
cubic expansivity = 57 × 10-4 K-1
change in temperature, Δθ = θ2 – θ1 = 30°C – 0°C = 30°C
To calculate the increase in volume we need to calculate V1 and V2
Step 1: Calculate volume V1
V1, volume at temperature 0°C is unknown but the mass and density of the object at temperature 0°C are given.
Use the Values of mass & density to find V1
Density = \( \frac {mass}{volume}\)
8.5 × 103 = \( \frac {170}{volume}\)
Volume = \( \frac {170}{8.5 \: \times \: 10^{-3}}\)
V1 at temperature 0°C = 0.02 m3
Step 2: calculate V2
⇒ \(\scriptsize γ = \normalsize \frac {V_2 \: – \: V_1}{V_1 \: \times \: (\theta_2 \: – \: \theta_1)}\)
⇒ \( \scriptsize V_2 \: – \:V_1 = V_1 \times (\theta_2 \: – \: \theta_1)γ \)
⇒ \( \scriptsize V_2 = V_1 \times (\theta_2 \: – \: \theta_1)γ\: +\: V_1 \)
⇒ \( \scriptsize V_2 = V_1 ( (\theta_2 \: – \: \theta_1)γ \: + \:1) \)
⇒ \( \scriptsize V_2 = 0.02 ( 30\: \times\: 57\: \times\: 10^{-4}\: +\: 1) \)
⇒ \( \scriptsize V_2 = 0.02 ( 0.171 \:+\: 1) \)
⇒ \( \scriptsize V_2 = 0.02 (1.171) \)
⇒ \( \scriptsize 0.02342 m^3 \)
Increase in volume = V2 – V1
= 0.02342 – 0.02
= 0.00342 m3
Example 10.4.2:
A solid metal cube of side 15 cm is heated from 5°C to 50°C. if the linear expansivity of the metal is 1.8 × 10-4 K-1, calculate the increase in its volume.
Solution
Length of metal cube = 15 cm, initial temperature = 5°C, final temperature = 50°C
Linear expansivity of the metal is 1.8 × 10-4 K-1.
To calculate the increase in Volume we need to calculate the values of V1 and V2. These values are not given in the question but we can calculate V1 using the length of the cube. The material is a cube and we are given only one side of the cube. Since a cube has equal sides, the length, breadth, and height of the cube are the same. i.e l = b = h

Therefore, Volume of cube at 5°C = l × b × h = 15 × 15 × 15 = 3,375 cm3
Cubic expansivity = 3 Linear expansivity
Cubic expansivity = 3 × 1.8 × 10-4 K-1
Cubic expansivity = 5.4 × 10-4 K-1
⇒ \(\scriptsize γ = \normalsize \frac {V_2 \: – \: V_1}{V_1 \: \times \: (\theta_2 \: – \: \theta_1)}\)
Make V2 the subject of the formula
⇒ \(\scriptsize V_2 = V_1 ( (\theta_2 \: – \: \theta_1)γ \:+\: 1) \)
⇒ \(\scriptsize V_2 = 3,375 ( (50 \: – \: 5)5.4 \; \times \: 10^{-4} \:+ \:1) \)
⇒ \(\scriptsize V_2 = 3,375 ( (45)5.4 \: \times \: 10^{-4} \:+\: 1) \)
⇒ \(\scriptsize V_2 = 3,375 ( 0.0234\:+\: 1) \)
⇒ \(\scriptsize V_2 = 3,375 ( 1.0234) \)
⇒ \(\scriptsize V_2 = 3,457 \: cm^3 \)
Increase in volume = V2 – V1 = 3,457 – 3,375 = 82 cm3