Back to Course

SS1: PHYSICS – 1ST TERM

0% Complete
0/0 Steps
  1. Introduction to Physics | Week 1
    4 Topics
    |
    1 Quiz
  2. Measurement I | Week 2
    3 Topics
    |
    1 Quiz
  3. Measurement II | Week 3
    6 Topics
    |
    1 Quiz
  4. Motion | Week 4
    5 Topics
    |
    1 Quiz
  5. Velocity-Time Graph | Week 5
    4 Topics
    |
    1 Quiz
  6. Causes of Motion | Week 6
    5 Topics
    |
    1 Quiz
  7. Work, Energy & Power | Week 7
    3 Topics
  8. Energy Transformation / Power | Week 8
    3 Topics
    |
    1 Quiz
  9. Heat Energy | Week 9
    5 Topics
    |
    1 Quiz
  10. Linear Expansion | Week 10
    7 Topics
    |
    1 Quiz
  • excellence
  • Follow

Lesson Progress
0% Complete

Topic Content:

  • Definition of Linear Expansivity
  • Calculations on Linear Expansivity

Expansivity is the increase in the length of a substance when its temperature increases by one kelvin or degree Celsius.

Linear expansivity (α) of a substance is defined as the increase in length of a substance, per unit length of the substance, per degree rise in temperature.

Mathematically,

linear expansivity  = α

\(\scriptsize α = \normalsize \frac {Change \: in \: Length}{Original \: Length \: \times \: temperature \: rise}\)

If L1 = the original or initial length

θ1 = Original or initial temperature

L = New Length

θ2 = New temperature

α = Linear expansivity

\( \scriptsize Then \;  α = \normalsize \frac {L_2\: – \:L_1}{L_1 \: \times \: (\theta_2\: – \: \theta_1\ ) }\)

The S.I unit is per kelvin \( \scriptsize K^{-1} \) or per degree Celsius \( \scriptsize ^{०} C^{-1} \)

For a change in length,

L2 – L1 = α L1 2 – θ1)

New length, L2 = L1 + α L1 2 – θ1)

Or

L2 = L1 (1 + α (θ2 – θ1))

The value of linear expansivity (α) differs from substance to substance and is highest for metals.

SubstanceLinear
Expansivity
(K-1)
Platinum0.000009
Iron 0.000012
Copper0.000017
Brass0.000018
Aluminium0.000023
Lead0.000029
Zinc0.000030
Invar
(alloy)
0.000001
Glass0.0000085
Silica0.0000084

Example 10.2.1:

A copper rod whose length at 30ºC is 10.0 cm is heated to 60ºC. Find its new length if the Linear expansivity (α) for copper = 0.000017 k-1.

Solution

L1 = 10.0 cm,    θ1 =   30ºC,   α = 0.000017 k-1

L2 = ?               θ2 =   60ºC

\( \scriptsize α = \normalsize \frac {L_2\: – \:L_1}{L_1 \: \times \: (\theta_2\: – \: \theta_1\;) }\)

\(\scriptsize L_2 = L_1 \: + \: \alpha L_1 \left( \theta_2 \: -\: \theta_1 \right) \)

        = 10 + 0.000017 × 10 × (60 – 30)

        = 10 + 0.0051

       = 10.0051 cm

Example 10.2.2:

An iron rod of length 12.01 m is heated from 10ºC to 70ºC. If its new length is 12.06 m, calculate its linear expansivity.

Solution

L2 = 12.06 m             L1 = 12.01 m, 

θ2 =   70ºC                 θ1 =   10ºC,

 α = ?      

\( \scriptsize α = \normalsize \frac {L_2\: – \:L_1}{L_1 \: \times \: (\theta_2\: – \: \theta_1\;) }\)

\( \scriptsize α = \normalsize \frac {12.06\: – \:12.01}{12.01 \: \times \: 70\: – \: 10 } \)

\( \scriptsize α = \normalsize \frac {0.05}{12.01 \: \times \: 60 } \scriptsize = 0.000069 \: K^{-1} \)

\( \scriptsize α = 0.000069\: K^{-1}\)

Example 10.2.3:

A metal rod has a length of 100 cm at 200ºC. At what temperature will its length be 99.4 cm if the linear expansivity of the material of the rod is 0.00002/K?

Solution 

L2 = 99.4 cm

L1 = 100 cm

 Initial temperature  θ₁ = 200ºC

Final temperature  θ₂ = ?

α = 0.00002/K

\( \scriptsize α = \normalsize \frac {L_2\: – \:L_1}{L_1 \: \times \: (\theta_2\: – \: \theta_1\;) }\)
\( \scriptsize 0.00002 = \normalsize \frac {99.4\: – \:100}{100 \: \times \: (\theta_2\: – \: 200\;) }\)

\( \scriptsize 0.00002 = \normalsize \frac {0.6}{100 \: \times \: (\theta_2\: – \: 200\:) }\)

0.00002  (100θ2 –  20000 ) = 0.6

 0.002 θ2 + 0.4 = 0.6

 0.002 θ2  = 0.6 – 0.4

0.002 θ2  = 0.2

θ2 = \( \frac {0.2}{0.002}\)

θ2 = 100ºC

Subscribe
Notify of
guest
4 Comments
Oldest
Newest
Inline Feedbacks
View all comments
Charity
Charity
3 years ago

very easy to understand with this explanation

Meemee
Meemee
2 years ago

This was very helpful. Thanks a ton.

2 years ago

Very easy to understand

2 years ago

💗💗💗💗💗💗💗💗💗💗💗💗💗💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖💗💗💗💗💗💗💗💗💗💗💗💖💕💕💕💖💖💗💖💕💕💕💕💕💕💕

4
0
Would love your thoughts, please comment.x
()
x