Topic Content:
- Definition of Linear Expansivity
- Calculations on Linear Expansivity
Expansivity is the increase in the length of a substance when its temperature increases by one kelvin or degree Celsius.
Linear expansivity (α) of a substance is defined as the increase in length of a substance, per unit length of the substance, per degree rise in temperature.
Mathematically,
linear expansivity = α
\(\scriptsize α = \normalsize \frac {Change \: in \: Length}{Original \: Length \: \times \: temperature \: rise}\)
If L1 = the original or initial length
θ1 = Original or initial temperature
L2 = New Length
θ2 = New temperature
α = Linear expansivity
\( \scriptsize Then \; α = \normalsize \frac {L_2\: – \:L_1}{L_1 \: \times \: (\theta_2\: – \: \theta_1\ ) }\)
The S.I unit is per kelvin \( \scriptsize K^{-1} \) or per degree Celsius \( \scriptsize ^{०} C^{-1} \)
For a change in length,
L2 – L1 = α L1 (θ2 – θ1)
New length, L2 = L1 + α L1 (θ2 – θ1)
Or
L2 = L1 (1 + α (θ2 – θ1))
The value of linear expansivity (α) differs from substance to substance and is highest for metals.
Substance | Linear Expansivity (K-1) |
Platinum | 0.000009 |
Iron | 0.000012 |
Copper | 0.000017 |
Brass | 0.000018 |
Aluminium | 0.000023 |
Lead | 0.000029 |
Zinc | 0.000030 |
Invar (alloy) | 0.000001 |
Glass | 0.0000085 |
Silica | 0.0000084 |
Example 10.2.1:
A copper rod whose length at 30ºC is 10.0 cm is heated to 60ºC. Find its new length if the Linear expansivity (α) for copper = 0.000017 k-1.
Solution
L1 = 10.0 cm, θ1 = 30ºC, α = 0.000017 k-1
L2 = ? θ2 = 60ºC
\( \scriptsize α = \normalsize \frac {L_2\: – \:L_1}{L_1 \: \times \: (\theta_2\: – \: \theta_1\;) }\) |
= 10 + 0.000017 × 10 × (60 – 30)
= 10 + 0.0051
= 10.0051 cm
Example 10.2.2:
An iron rod of length 12.01 m is heated from 10ºC to 70ºC. If its new length is 12.06 m, calculate its linear expansivity.
Solution
L2 = 12.06 m L1 = 12.01 m,
θ2 = 70ºC θ1 = 10ºC,
α = ?
\( \scriptsize α = \normalsize \frac {L_2\: – \:L_1}{L_1 \: \times \: (\theta_2\: – \: \theta_1\;) }\) |
Example 10.2.3:
A metal rod has a length of 100 cm at 200ºC. At what temperature will its length be 99.4 cm if the linear expansivity of the material of the rod is 0.00002/K?
Solution
L2 = 99.4 cm
L1 = 100 cm
Initial temperature θ₁ = 200ºC
Final temperature θ₂ = ?
α = 0.00002/K
\( \scriptsize α = \normalsize \frac {L_2\: – \:L_1}{L_1 \: \times \: (\theta_2\: – \: \theta_1\;) }\) |
0.00002 (100θ2 – 20000 ) = 0.6
0.002 θ2 + 0.4 = 0.6
0.002 θ2 = 0.6 – 0.4
0.002 θ2 = 0.2
θ2 = \( \frac {0.2}{0.002}\)
θ2 = 100ºC
very easy to understand with this explanation
This was very helpful. Thanks a ton.
Very easy to understand
💗💗💗💗💗💗💗💗💗💗💗💗💗💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖💗💗💗💗💗💗💗💗💗💗💗💖💕💕💕💖💖💗💖💕💕💕💕💕💕💕