Topic Content:
- Derivation of The Relationship between Linear Expansivity and Area Expansivity
- Derivation of The Relationship between Linear Expansivity and Cubic Expansivity
Derivation of The Relationship between Linear Expansivity and Area Expansivity:
Let us consider a sheet of metal that has been heated through a temperature change of θ. Let the initial length and breadth be L1 and B1 respectively and the final length and breadth be L2 and B2 respectively.
Let the initial area of the sheet, \( \scriptsize A_1 = L_1 \: \times \: B_1 \)
Let the final area of the sheet, \( \scriptsize A_2 = L_2 \: \times \: B_2 \)
From the formula of linear expansivity,
L2 = L1( 1 + α Δθ)
B2 = B1(1 + α Δθ)
where Δθ = θ2 – θ1
Hence \( \scriptsize A_2 = L_2 \: \times \: B_2 \\ = \scriptsize L_1 (1 \: + \: \alpha \Delta \theta) \: \times \: B_1(1 \: + \: \alpha \Delta \theta) \\ \scriptsize = L_1B_1(1 \: + \: \alpha \Delta \theta)^2 \\ \scriptsize = L_1B_1( 1 \: + \: 2 \alpha \Delta \theta \: + \: \alpha^2 \Delta \theta^2) \)
We can neglect α² because α is a very small quantity (e.g. 0.00002). Therefore, α² is approximately zero. I.e. α² = 0.
Hence we have;
\( \scriptsize A_2 = L_1B_1( 1 \: + \: 2 \alpha\Delta \theta) \) …..(1)
From the formula of Area expansivity,
\( \scriptsize A_2 = A_1( 1 \: + \: \beta \Delta \theta) \) …..(2)
Note: \( \scriptsize A_1 = L_1 B_1\)
By comparing equations (1) and (2)
We have \( \scriptsize \beta \Delta \theta = 2 \alpha \Delta \theta \)
Divide both equations by Δθ
\( \frac{ \beta \Delta \theta}{\Delta \theta} = \frac{2 \alpha \Delta \theta}{\Delta \theta} \)\( \scriptsize \therefore \beta = 2 \alpha \)
Derivation of The Relationship between Linear Expansivity and Cubic Expansivity:
Using similar calculations we can show that the cubic and linear expansivity are related by this equation
\( \scriptsize \gamma = 3 \alpha \)Let us consider a sheet of metal that has been heated through a temperature change of θ. Let the initial length, breadth, and height be L1, B1 and H1 respectively and the final length, breadth and height be L2, B2 and H2 respectively.
Let the initial volume of the metal, \( \scriptsize V_1 = L_1 \: \times \: B_1 \: \times \:H_1\)
Let the final volume of the metal, \( \scriptsize V_2 = L_2 \: \times \: B_2 \: \times \:H_2\)
From the formula of linear expansivity,
L2 = L1( 1 + α Δθ)
B2 = B1( 1 + α Δθ)
H2 = H1( 1 + α Δθ)
Substitute the values above into the equation \( \scriptsize V_2 = L_2 \: \times \: B_2 \: \times \:H_2\)
V2 = L1( 1 + α Δθ) × B1( 1 + α Δθ) × H1( 1 + α Δθ)
V2 = L1B1H1( 1 + α Δθ)( 1 + α Δθ) (1 + α Δθ)
open brackets
V2 = L1B1H1( 1 + α Δθ)( 1 + α Δθ) (1 + α Δθ)
V2 = L1B1H1( 1 + α Δθ + αΔθ + α2Δα2Δθ2θ2 )(1 + α Δθ)
V2 = L1B1H1( 1 + 2αΔθ + α2Δθ2 )(1 + α Δθ)
Simplify further by opening brackets
V2 = L1B1H1( 1 + 2αΔθ + α2Δθ2 )(1 + α Δθ)
V2 = L1B1H1( 1 + α Δθ + 2αΔθ + 2α2Δθ2 + α2Δθ2 + α3Δθ3 )
V2 = L1B1H1( 1 + 3αΔθ + 2α2Δθ2 + α2Δθ2 + α3Δθ3 )
But V1 = L1B1H1
∴ V2 = V1( 1 + 3αΔθ + 2α2Δθ2 + α2Δθ2 + α3Δθ3 )
We can neglect α2 and α3 because α is a very small quantity (e.g. 0.00002). Therefore, α2 and α3 are approximately zero. I.e. α2 = 0, α3 = 0.
∴ \( \scriptsize V_2 = V_1(1 \: + \: 3 \alpha \Delta \theta) \) …(a)
From the formula of cubic expansivity,
\(\scriptsize V_2 = V_1(1 \: + \: \gamma \Delta \theta) \) ….(b)
By comparing equations (a) and (b)
\( \scriptsize \gamma \Delta \theta = 3 \alpha \Delta \theta \)Divide both equations by Δθ
\( \frac{ \gamma \Delta \theta}{\Delta \theta} = \frac{3 \alpha \Delta \theta}{\Delta \theta} \)\( \scriptsize \gamma = 3 \alpha \)
Awesome!!!!!