Back to Course

SS1: PHYSICS – 1ST TERM

0% Complete
0/0 Steps
  1. Introduction to Physics | Week 1
    4 Topics
    |
    1 Quiz
  2. Measurement I | Week 2
    3 Topics
    |
    1 Quiz
  3. Measurement II | Week 3
    6 Topics
    |
    1 Quiz
  4. Motion | Week 4
    5 Topics
    |
    1 Quiz
  5. Velocity-Time Graph | Week 5
    4 Topics
    |
    1 Quiz
  6. Causes of Motion | Week 6
    5 Topics
    |
    1 Quiz
  7. Work, Energy & Power | Week 7
    3 Topics
  8. Energy Transformation / Power | Week 8
    3 Topics
    |
    1 Quiz
  9. Heat Energy | Week 9
    5 Topics
    |
    1 Quiz
  10. Linear Expansion | Week 10
    7 Topics
    |
    1 Quiz



Lesson 3, Topic 6
In Progress

Dimensions of Physical Quantities

Lesson Progress
0% Complete

Topic Content:

  • Dimensions of Physical Quantities

Any quantity that can be measured in units also has dimension, hence the dimension for length, mass, and time is as follows:

QuantitySymbol
MassM
LengthL
TimeT

Some examples of dimension for derived quantities are:

Velocity = \( \frac {length}{time} \\ = \frac {L}{T} \)

Dimension of Velocity is \(\scriptsize [L][T^{-1}] \)

Momentum = Mass × Velocity

= \(\scriptsize M \times LT^{-1} \\ \scriptsize = M LT^{-1} \)

 

You are viewing an excerpt of this Topic. Subscribe Now to get Full Access to ALL this Subject's Topics and Quizzes for this Term!

Click on the button "Subscribe Now" below for Full Access!

Subscribe Now

Note: If you have Already Subscribed and you are seeing this message, it means you are logged out. Please Log In using the Login Button Below to Carry on Studying!

avataravatar

Responses

Your email address will not be published. Required fields are marked *

2022 Physics WAEC Theory Past Question 3

The effective potential energy, E, of a lunar satellite of mass, m1, moving in an. elliptical orbit around the moon of mass, m2, is given by

E = \(\frac{K^2}{2m_1 r^2} = \frac{Gm_1m_2}{r}\)

where r is the distance of the satellite from the moon and G is the universal gravitational constant of dimensions, \( \scriptsize M^{-1}L^3 T^{-2} \)

Determine the dimensions of the angular momentum, K, of the satellite using dimensional analysis.

Solution:

E = \(\frac{K^2}{2m_1 r^2} = \frac{Gm_1m_2}{r}\)

∴ \(\frac{K^2}{2m_1 r^2} = \frac{Gm_1m_2}{r}\)

⇒ \( \scriptsize k^2 = \normalsize\frac{Gm_1m_2 \: \times \: 2m_1 \not{r^2}}{\not{r}}\)

⇒ \( \scriptsize k^2 = 2Gm_1m_2 m_1 \: \times \: r\)

(Note: we can ignore 2 in front of G since we are working in dimensions)

Insert Dimensions

Dimension for:
G = \( \scriptsize M^{-1}L^3 T^{-2} \)
m = M
r = L

⇒ \( \scriptsize k^2 =M^{-1}L^3 T^{-2} \: \times \: M \: \times \: M \: \times \: M \: \times \: L \)

⇒ \( \scriptsize k^2 =M^{-1} \: \times \: M^3 \: \times \: L^3 \: \times \: L \: \times \: T^{-2} \)

⇒ \( \scriptsize k^2 =M^{(-1 + 3)} \: \times \: L^{(3+1)} \: \times \: T^{-2} \)

⇒ \( \scriptsize k^2 = M^2 \: \times \: L^4  \: \times \: T^{-2} \)

⇒ \( \scriptsize k^2 = M^2  L^4  T^{-2} \)

multiply both sides by \( \frac{1}{2} \) or find the square root of both sides.

⇒ \( \scriptsize k^{2\: \times \: \frac{1}{2}} = \left(M^2  L^4  T^{-2}\right)^{\frac{1}{2}} \)

⇒ \( \scriptsize k = M^{2\: \times \: \frac{1}{2}}  L^{4\: \times \: \frac{1}{2}}  T^{-2\: \times \: \frac{1}{2}} \)

⇒ \( \scriptsize k = M  L^{2}  T^{-1} \)

∴ dimensions of the angular momentum, K, ⇒ \( \scriptsize  M  L^{2}  T^{-1} \)

error: Alert: Content selection is disabled!!