Back to Course

SS1: PHYSICS – 3RD TERM

0% Complete
0/0 Steps
  1. Production of Electric Current | Week 1
    6 Topics
    |
    1 Quiz
  2. Electric Current | Week 2
    5 Topics
    |
    1 Quiz
  3. Electrical Resistance of a Conductor | Week 3
    5 Topics
    |
    1 Quiz
  4. Particulate Nature of Matter | Week 4
    5 Topics
    |
    1 Quiz
  5. Crystalline and Non-crystalline Substances | Week 5
    3 Topics
    |
    1 Quiz
  6. Elastic Properties of Solids | Week 6 & 7
    4 Topics
    |
    1 Quiz
  7. Fluids at Rest & in Motion | Week 8 & 9
    6 Topics
    |
    1 Quiz
  8. Solar Collector
    3 Topics
    |
    1 Quiz
  • excellence
  • Follow

Lesson Progress
0% Complete

Topic Content:

  • Ohm’s Law

A German scientist Georg Simon Ohm investigated the relationship between voltage or potential difference and current flowing along a metallic conductor. His finding is known as Ohm’s law which is stated as follows;

The current flowing along a metallic conductor at constant temperature is directly proportional to the potential difference across its end provided other physical conditions remain constant.

If V represents the potential difference in volts, I represent the current flowing in amperes, then

 

You are viewing an excerpt of this Topic. Subscribe Now to get Full Access to ALL this Subject's Topics and Quizzes for this Term!

Click on the button "Subscribe Now" below for Full Access!

Subscribe Now

Note: If you have Already Subscribed and you are seeing this message, it means you are logged out. Please Log In using the Login Button Below to Carry on Studying!

Responses

Your email address will not be published. Required fields are marked *

Exercise 1

Determine the value of resistance that will cause a voltage of 125 Volt to generate 2.5 Amperes of Current.

Values in the question:

Voltage V = 1250 V,  Resistance R = ?, current I = 2.5 A

Formula:

Voltage V = IR

Substitute the values given into the equation   

125 = 2.5 x R

Make R the subject of the formula:  

R = \( \frac{125}{2.5}\) 

R = 50Ω