Topic Content:
- Simple Linear Equations
Equation:
This is a mathematical expression showing that the views being expressed are equal
e.g. \( \scriptsize x \: + \: 2 = 7 \)
This example is an equation with an unknown variable.
The above equation can be re-written as x = 7 – 2, therefore x = 5
Example 1.1.1:
Solve Z + 7 = 2x + 3 where x = 6
Solution
Z + 7 = 2(6) + 3
Z + 7 = 12 + 3
Z + 7 = 15
Z = 15 – 7
Z = 8
Example 1.1.2:
Z + 7 = ax + c, where a = 3, x = 10, c = 3
Solution
Substitute these values into the equation
Z + 7 = 3(10) + 3
Z + 7 = 30 + 3
Z + 7 = 33
Z = 33 – 7
Z = 26
Simple Linear Equation:
This is an equation of the first degree. The graph of a simple linear equation is always a straight line.
Example 1.1.3:
A market Demand curve for yams is given by D = 7x – 14
find x where D = 63
Solution:
D = 7x – 14
Substitute the value of D into the equation.
63 = 7x – 14
63 + 14 = 7x
7x = 63 + 14
7x = 77
x = \( \frac {77}{7} \)
x = 11
Example 1.1.4:
Given the equation \(\scriptsize Q = 60 \: – \: \normalsize \frac{1}{3}\scriptsize P\)
where Q = quantity demanded and P = price
(a) Find the quantity demanded when price is (i) ₦30 (ii) ₦60
(b) Find the price when the quantity is (i) 0 (ii) 60
(a) Find the quantity demanded when price is (i) ₦30 (ii) ₦60
Solution:
(i) ₦30
Substitute 30 for P
Given the equation \(\scriptsize Q = 60 \: – \: \normalsize \frac{1}{3}\scriptsize P \\ \scriptsize Q = 60 \: – \: \normalsize \frac{1}{3}\scriptsize (30) \\ \scriptsize Q = 60 \: – \: 10 \\ \scriptsize Q = 50 \)
(ii) ₦60
Substitute 60 for P
Given the equation \(\scriptsize Q = 60 \: – \: \normalsize \frac{1}{3}\scriptsize P \\ \scriptsize Q = 60 \: – \: \normalsize \frac{1}{3}\scriptsize (60) \\ \scriptsize Q = 60 \: – \: 20 \\ \scriptsize Q = 40 \)
(b) Find the price when the quantity is (i) 0 (ii) 60
Solution:
(i) Q = 0
Substitute Q for 0
Given the equation \(\scriptsize Q = 60 \: – \: \normalsize \frac{1}{3}\scriptsize P \\ \scriptsize 0 = 60 \: – \: \normalsize \frac{1}{3}\scriptsize (P) \\ \scriptsize 0 = 60 \: – \: \normalsize \frac{P}{3} \\ \scriptsize – 60 = \: – \normalsize \frac{P}{3} \\ \frac{P}{3} \scriptsize = 60 \\ \scriptsize P = 60 \: \times \: 3 \\ \scriptsize P = 180 \)
(ii) Q = 60
Substitute Q for 60
Given the equation \(\scriptsize Q = 60 \: – \: \normalsize \frac{1}{3}\scriptsize P \\ \scriptsize 60 = 60 \: – \: \normalsize \frac{1}{3}\scriptsize (P) \\ \scriptsize 60 = 60 \: – \: \normalsize \frac{P}{3} \\ \frac{P}{3} \scriptsize = 60 \: -\: 60 \\ \frac{P}{3} \scriptsize = 0 \\ \scriptsize P = 0 \)
Responses