Logarithms of Numbers Less Than One – (Introduction | Revision)
Topic Content:
- Logarithms of Numbers Less Than One – (Introduction | Revision)
Revision (Click on the links below)
Definition of Logarithms
How to use Logarithm Table
How to use Antilog Table
Calculations using Logarithms
Powers & Roots
The logarithm of numbers less than one can be found using the negative power of 10 as the component characteristic.
For example, 0.001634
In standard form = 1.634 × 10-3

from tables = 100.2133 × 10-3
Using laws of indices = 100.2133 + (-3)
= 10-3+0.2133
Therefore we can say log100.001634 = -3 + 0.2133
The standard way of writing this is:
log100.001634 = \( \scriptsize \bar{3}.2133 \)
This reads ‘bar 3 point 2133’
Note that \( \scriptsize \bar{3}.2133 \) has a negative characteristic (-3) and positive mantissa (+ 0.2133)
Thus;
log100.1634 = \( \scriptsize \bar{1}.2133 \)
log100.01634 = \( \scriptsize \bar{2}.2133 \)
log100.001634 = \( \scriptsize \bar{3}.2133 \)
log100.0001634 = \( \scriptsize \bar{4}.2133 \)
Example 1.1.1:
Determine the characteristics of the logarithm of the numbers below:
(a) 0.002
(b) 0.1934
(c) 0.0000456
(d) 0.000789
Solution
(a) 0.002
Standard form: \( \scriptsize 2 \: \times \: 10^{-3} \)
Characteristic: \( \scriptsize \bar{3} \)
(b) 0.1934
Standard form: \( \scriptsize 1.934 \: \times \: 10^{-1} \)
Characteristic: \( \scriptsize \bar{1} \)
(c) 0.0000456
Standard form: \( \scriptsize 4.56 \: \times \: 10^{-5} \)
Characteristic: \( \scriptsize \bar{5} \)
(d) 0.000789
Standard form: \( \scriptsize 7.89 \: \times \: 10^{-4} \)
Characteristic: \( \scriptsize \bar{4} \)
Example 1.1.2:
Use the tables to find the logarithm of the following numbers:
(a) 0.006789
(b) 0.03498
(c) 0.007741
(d) 0.1265
Solution
(a) 0.006789
= \( \scriptsize \log 6.789 \: \times \: 10^{-3} \)
= \( \scriptsize 10^{0.8318} \: \times \: 10^{-3} \)
= \( \scriptsize 10^{-3 \: + \: 0.8318} \)
= \( \scriptsize \bar{3}.8318 \)
(b) 0.03498
= \( \scriptsize \log 3.498 \: \times \: 10^{-2} \)
= \( \scriptsize 10^{0.5438} \: \times \: 10^{-2} \)
= \( \scriptsize 10^{-2 \: + \: 0.5438} \)
= \( \scriptsize \bar{2}.5438 \)
(c) 0.007741
= \( \scriptsize \log 7.741 \: \times \: 10^{-3} \)
= \( \scriptsize 10^{0.8888} \: \times \: 10^{-3} \)
= \( \scriptsize 10^{-3 \: + \: 0.8888} \)
= \( \scriptsize \bar{3}.8888 \)
(d) 0.1265
= \( \scriptsize \log 1.265 \: \times \: 10^{-1} \)
= \( \scriptsize 10^{0.1021} \: \times \: 10^{-1} \)
= \( \scriptsize 10^{-1 \: + \: 0.1021} \)
= \( \scriptsize \bar{1}.1021 \)
Example 1.1.3:
Use the anti-log tables to find the number whose logarithm (base 10) is
(a) 0.3467
(b) 1.3467
(c) \( \scriptsize \bar{2}.1021 \)
(d) \( \scriptsize \bar{4}.1021 \)
Solution
(a) 0.3467
let the number be x
logx = 0.3467
x = antilog of 0.3467
x = 100.3467
x = 100 + 0.3467
x = 100 × 100.3467
x = 1 × 2.222
x = 2.222
(b) 1.3467
let the number be x
logx = 1.3467
x = antilog of 1.3467
x = 101.3467
x = 101 + 0.3467
x = 101 × 100.3467
x = 10 × 2.222
x = 22.22
(c) \( \scriptsize \bar{2}.1021 \)
let the number be x
logx = \( \scriptsize \bar{2}.1021 \)
x = antilog of \( \scriptsize \bar{2}.1021 \)
x = \( \scriptsize 10^{\bar{2}.1021} \)
x = \( \scriptsize 10^{\bar{2} \: + \: 0.1021} \)
x = \( \scriptsize 10^{\bar{2}} \: \times \: 10^{0.1021} \)
x = \( \scriptsize 10^{-2} \: \times \: 10^{0.1021} \)
x = \( \frac{1}{10^2} \scriptsize \: \times \: 10^{0.1021} \)
x = \( \frac{1}{100} \scriptsize \: \times \: 1.256 \)
x = \( \scriptsize 0.01 \: \times \: 1.265 \)
x = \( \scriptsize 0.01265 \)
(d) \( \scriptsize \bar{4}.1021 \)
let the number be x
logx = \( \scriptsize \bar{4}.1021 \)
x = antilog of \( \scriptsize \bar{4}.1021 \)
x = \( \scriptsize 10^{\bar{4}.1021} \)
x = \( \scriptsize 10^{\bar{4} \: + \: 0.1021} \)
x = \( \scriptsize 10^{\bar{4}} \: \times \: 10^{0.1021} \)
x = \( \scriptsize 10^{-4} \: \times \: 10^{0.1021} \)
x = \( \frac{1}{10^4} \scriptsize \: \times \: 10^{0.1021} \)
x = \( \frac{1}{10000} \scriptsize \: \times \: 1.256 \)
x = \( \scriptsize 0.0001 \: \times \: 1.265 \)
x = \( \scriptsize 0.0001265 \)