Back to Course

SS2: MATHEMATICS - 1ST TERM

0% Complete
0/0 Steps
  • excellence
  • Follow

Lesson Progress
0% Complete

Topic Content:

  • Logarithms of Numbers Less Than One (Worked Examples)

Example 1.2.1:

Use logarithms to evaluate the following:

i) \( \scriptsize \left ( 0.624 \div 0.09835 \right )^2 \)

ii) \( \scriptsize\sqrt {0.6821 \times 0.005924} \)

iii) \( \sqrt [3] {\frac {65.91 \: \times \: 0.0741}{576.2}} \)

Solution:

i) \( \scriptsize \left ( 0.624 \div 0.09835 \right )^2 \)

NumberLogarithm
0.624\(\scriptsize\bar{1}.7952\) 
0.09835\(\scriptsize\bar{2}.9927\) 
\(\scriptsize {0.8025 \: \times \: 2}\) 
\(\scriptsize 1.6050 \) 
Antilog = 4.0272
Answer = \(\scriptsize 4.0272 \: \times \: 10^1 \\ \scriptsize = 40.272\)

ii) \( \scriptsize\sqrt {0.6821 \times 0.005924} \)

NumberLogarithm
0.6821\(\scriptsize\bar{1}.8338 \) 
0.005924+\(\scriptsize\bar{3}.7726\) 
\(\scriptsize\bar{3}.6064 \div 2\) 
\(\scriptsize(\bar{4} \: + \: 1.6064) \div 2\) 
\(\scriptsize\bar{2}.8032\) 
Antilog = 6.3562
Answer = \( \scriptsize 6.356 \times 10^{-2}\\ \scriptsize \: or \: 0.06356 \)

iii) \( \sqrt [3] {\frac {65.91 \: \times \: 0.0741}{576.2}} \)

NumberLogarithm
65.91\(\scriptsize 1.8190 \) 
0.0741+\(\scriptsize\bar{2}.8698\) 
\(\scriptsize 0.6888 \) 
567.2\(\scriptsize 2.7537\) 
\(\scriptsize\bar{3}.9351 \: \div \: 3\) 
\(\scriptsize (\bar{3} \: + \: 0.9351) \: \div \: 3\) 
\(\scriptsize \bar{1}.3117\) 
Antilog = 2.0497
Answer = \( \scriptsize 2.0497 \times 10^{-1}\\ \scriptsize \; or \; 0.20497 \)

iv) \( \sqrt [4] {\frac {0.078 }{0.652 \; \times \; 0.841}} \)

NumberLogarithm
0.078\(\scriptsize \bar {2}.8921 \rightarrow \) \(\scriptsize \bar {2}.8921 \) 
0.652\( \scriptsize \bar{1}.8142\) 
0.841+\( \scriptsize \bar{1}.9248 \) 
\(\scriptsize\bar{1}.7390 \rightarrow \) \(\scriptsize \bar{1}.7390 \) 
\(\scriptsize\bar{1}.1531 \; \div \; 4\) 
\(\scriptsize (\bar{4} + 3.1531 )\; \div \; 4\) 
\(\scriptsize\bar{1}.7883 \) 
Antilog = 6.142
Answer = \( \scriptsize 6.142 \times 10^{-1} \\ \scriptsize \: or \: 0.642 \)
Subscribe
Notify of
guest
7 Comments
Oldest
Newest
Inline Feedbacks
View all comments
2 years ago

can i ask my own question

avatar
Covenant Youths
Reply to  OKEKE CHISOM
9 months ago

yes naaaaaaaaa

Eze chdubem
Eze chdubem
2 years ago

That his has helped me.Thanks👍👍

avatar
Erhire Emmanuel
1 year ago

So so helpful, thanks 🙏
Much luv 😘.
From an ss2 student having difficulty in logarithm

Steve
Steve
Reply to  Erhire Emmanuel
1 year ago

You get it

Covenant Youths
Reply to  Erhire Emmanuel
9 months ago

Actually u are wrong because log is very simple

7 months ago

❤️❤️❤️❤️❤️❤️❤️❤️❤️🥰🥰

7
0
Would love your thoughts, please comment.x
()
x