Topic Content:
- Logarithms of Numbers Less Than One (Worked Examples)
Example 1.2.1:
Use logarithms to evaluate the following:
i) \( \scriptsize \left ( 0.624 \div 0.09835 \right )^2 \)
ii) \( \scriptsize\sqrt {0.6821 \times 0.005924} \)
iii) \( \sqrt [3] {\frac {65.91 \: \times \: 0.0741}{576.2}} \)
Solution:
i) \( \scriptsize \left ( 0.624 \div 0.09835 \right )^2 \)
Number | Logarithm | |
0.624 | \(\scriptsize\bar{1}.7952\) | |
0.09835 | – | \(\scriptsize\bar{2}.9927\) |
\(\scriptsize {0.8025 \: \times \: 2}\) | ||
\(\scriptsize 1.6050 \) | ||
Antilog = 4.0272 | ||
Answer = \(\scriptsize 4.0272 \: \times \: 10^1 \\ \scriptsize = 40.272\) |
ii) \( \scriptsize\sqrt {0.6821 \times 0.005924} \)
Number | Logarithm | |
0.6821 | \(\scriptsize\bar{1}.8338 \) | |
0.005924 | + | \(\scriptsize\bar{3}.7726\) |
\(\scriptsize\bar{3}.6064 \div 2\) | ||
\(\scriptsize(\bar{4} \: + \: 1.6064) \div 2\) | ||
\(\scriptsize\bar{2}.8032\) | ||
Antilog = 6.3562 | ||
Answer = \( \scriptsize 6.356 \times 10^{-2}\\ \scriptsize \: or \: 0.06356 \) |
iii) \( \sqrt [3] {\frac {65.91 \: \times \: 0.0741}{576.2}} \)
Number | Logarithm | |
65.91 | \(\scriptsize 1.8190 \) | |
0.0741 | + | \(\scriptsize\bar{2}.8698\) |
\(\scriptsize 0.6888 \) | ||
567.2 | – | \(\scriptsize 2.7537\) |
\(\scriptsize\bar{3}.9351 \: \div \: 3\) | ||
\(\scriptsize (\bar{3} \: + \: 0.9351) \: \div \: 3\) | ||
\(\scriptsize \bar{1}.3117\) | ||
Antilog = 2.0497 | ||
Answer = \( \scriptsize 2.0497 \times 10^{-1}\\ \scriptsize \; or \; 0.20497 \) |
iv) \( \sqrt [4] {\frac {0.078 }{0.652 \; \times \; 0.841}} \)
Number | Logarithm | |||
0.078 | \(\scriptsize \bar {2}.8921 \rightarrow \) | \(\scriptsize \bar {2}.8921 \) | ||
0.652 | \( \scriptsize \bar{1}.8142\) | |||
0.841 | + | \( \scriptsize \bar{1}.9248 \) | ||
\(\scriptsize\bar{1}.7390 \rightarrow \) | – | \(\scriptsize \bar{1}.7390 \) | ||
\(\scriptsize\bar{1}.1531 \; \div \; 4\) | ||||
\(\scriptsize (\bar{4} + 3.1531 )\; \div \; 4\) | ||||
\(\scriptsize\bar{1}.7883 \) | ||||
Antilog = 6.142 | ||||
Answer = \( \scriptsize 6.142 \times 10^{-1} \\ \scriptsize \: or \: 0.642 \) |
can i ask my own question
yes naaaaaaaaa
That his has helped me.Thanks👍👍
So so helpful, thanks 🙏
Much luv 😘.
From an ss2 student having difficulty in logarithm
You get it
Actually u are wrong because log is very simple
❤️❤️❤️❤️❤️❤️❤️❤️❤️🥰🥰