Topic Content:
- Solving Quadratic Equations by the Formulae
The method of completing the square can be best used to establish a formula for the solution of the quadratic equation of the form
\( \scriptsize ax^2 \: +\: bx\: +\: c = 0 \)The formula is given as:
x = \(\large \frac{-b \pm \sqrt {b^2 \: – \: 4ac}}{2a}\)
The formula above is known as the quadratic formula, where
a is the coefficient of \( \scriptsize x^2 \)
b = coefficient of x
c = constant term.
Note that, the quadratic formula is particularly used to solve quadratic equations, which cannot be solved using factorization method.
Example 7.2.1:
Solve the following equations and leave your answers in 2 decimal places (d.p) using the quadratic formula.
i. \( \scriptsize 3x^2 \: – \: 5x \: – \: 9 = 0 \)
ii. \( \scriptsize – 3x^2 = (x\:+\:2)(x\:-\:1) \)
iii. \( \scriptsize \left(\scriptsize 2x \:- \: 3 \right)^2 = x^2 \)
iv. \( \scriptsize -4x^2 \: + \: 2x \: + \: 6 = 0 \)
Solution:
i. \( \scriptsize 3x^2 \: – \: 5x \: – \: 9 = 0 \)
Let a = 3, b = -5 and c = -9
Using the factor formula we have:
x = \(\frac{-b \pm \sqrt {b^2 \: – \: 4ac}}{2a}\)
x = \(\frac{-(-5) \pm \sqrt {5^2 \: – \: 4 \: \times \: 3 \: \times \: (-9)}}{2 \: \times \: 3}\)
x = \(\frac{5 \pm \sqrt {25\: + \:108}}{6}\)
x = \( \frac{5 \pm \sqrt{133} }{6} \)
x = \( \frac{5 \pm 11.53 }{6} \)
x = \( \frac{16.53 }{6} \:or \: \frac{-6.53}{6} \)
x = 2.76 or 1.09
ii. \( \scriptsize – 3x^2 = (x\:+\:2)(x\:-\:1) \)
Expand the brackets
⇒ \( \scriptsize – 3x^2 = x^2 \:+\:2x \:-\: x \: – \: 2 \)
Collect like terms
⇒ \( \scriptsize 4x^2 \: + \: x \: – \: 2 = 0 \)
a = 4, b = 1, c = – 2
Using the factor formula we have:
x = \( \normalsize \frac{-b \pm \sqrt {b^2 \: – \: 4ac}}{2a}\)
x = \(\frac{-1 \pm \sqrt {1^2 \: – \: 4 \: \times \: 4 \: \times \: (-2)}}{2 \: \times \: 4}\)
x = \(\frac{-1 \pm \sqrt {1 \:+ \:32}}{8}\)
x = \( \frac{-1 \pm \sqrt{33} }{8} \)
x = \( \frac{-1 \pm 5.74 }{8} \)
x = \( \frac{-1 \:- \: 5.74 }{8} \:or \: \frac{-1\:+ \: 5.74 }{8} \)
x = \( \frac{-6.74 }{8} \:or \: \frac{4.74}{8} \)
x = – 0.84 or 0.59
iii. \( \scriptsize \left(\scriptsize 2x \:- \: 3 \right)^2 = x^2 \)
Expand the brackets
⇒ \( \scriptsize \left(\scriptsize 2x \:- \: 3 \right) \left(\scriptsize 2x \:- \: 3 \right) = x^2 \)
\( \scriptsize 4x^2 \: – \: 6x\: – \: 6x \: + \: 9 = x^2 \)Collect like terms
⇒ \( \scriptsize 3x^2 \: – \:12x \: + \: 9 = 0 \)
Divide both sides by 3
⇒ \( \scriptsize x^2 \: – \:4x \: + \: 3 = 0 \)
Using the quadratic formula
a = 1, b = -4, c = 3
x = \( \normalsize \frac{-b \pm \sqrt {b^2 \: – \: 4ac}}{2a}\)
x = \(\frac{-(-4) \pm \sqrt {-4^2 \: – \: 4 \: \times \: 1 \: \times \: 3}}{2 \: \times \: 1}\)
x = \(\frac{4 \pm \sqrt {16 \: – \: 12}}{2}\)
x = \(\frac{4 \pm \sqrt {4}}{2}\)
x = \( \frac{4 \pm 2}{2} \)
x = \( \frac{4 + 2 }{2} \:or \: \frac{4 \: – \: 2}{2} \)
x = \( \frac{6 }{2} \:or \: \frac{2}{2} \)
x = 3 or 1
Alternate Method
\( \scriptsize \left(\scriptsize 2x \:- \: 3 \right)^2 = x^2 \)Take the square root of both sides
⇒ x = 2x – 3
⇒ x = 3
Note: This method only provides one solution.
iv. \( \scriptsize -4x^2 \: + \: 2x \: + \: 6 = 0 \)
Divide both sides by 2
⇒ \( \scriptsize -2x^2 \: + \: x \: + \: 3 = 0 \)
Re-arrange the terms
⇒ \( \scriptsize 2x^2 \: – \: x \: – \: 3 = 0 \)
Using the quadratic formula
⇒ a = 2, b = -1 and c = -3
x = \( \normalsize \frac{-b \pm \sqrt {b^2 \: – \: 4ac}}{2a}\)
x = \(\frac{-(-1) \pm \sqrt {(-1)^2 \: – \: 4 \: \times \:2 \: \times \: (-3)}}{2 \: \times \: 2}\)
x = \(\frac{1 \pm \sqrt {25}}{4}\)
x = \( \frac{1 \pm 5}{4} \)
x = \( \frac{1 \:+\: 5 }{4} \:or \: \frac{1 \: – \: 5}{2} \)
x = \( \frac{6 }{4} \:or \: \frac{-4}{4} \)
x = 1.5 or – 1