Topic Content:
- Changing the base of a logarithm
- Worked Examples – Logarithms
Note that it is possible to change the base of a given logarithm to a more convenient base.
Suppose logqP = y, then \( \scriptsize q^y = P \)
Taking logs to base a of both sides of
qy = p
\( \scriptsize log_a q^y = log_a P \) \( \scriptsize y log_a q = log_a P \)i.e y = \( \frac{log_aP}{log_aq} \)
∴lolq P = \( \frac{log_aP}{lolg_aq} \) (where p, q are positive real \( \scriptsize \neq \) numbers 1).
If a = P then,
logq a = \( \frac{log_aa}{log_aq} \)
i.e logq a = \( \frac{1}{log_aq} \)
Worked Examples 2.3.1:
Evaluate the following: (Try to work these examples out on your own using the laws of logarithms and then check the solutions by clicking ‘view solution’ )
(a) \( \scriptsize 3 \log 4 + \log 2\)
(b) \( \scriptsize 3 \log 2 + \log 20 \; – \log1.6\)
(c) \( \scriptsize 2 \: – \: 2 \log 5\)
(d) \( \frac {\log 8 \: – \: \log 4}{\log 6 \: – \: \log 3} \)
(e) \( \frac{1}{2}\scriptsize \log \normalsize \frac{25}{4}\scriptsize \: – \: 2 \log \normalsize \frac{4}{5} \scriptsize \: + \: \log \normalsize \frac{320}{125} \)
(f) \( \scriptsize \log \normalsize \frac{30}{16}\scriptsize \: – \: 2 \log \normalsize \frac{5}{9} \scriptsize\: + \: \log \normalsize \frac{400}{243} \)
(g) \( \scriptsize \log_{36} 6\: +\: \log_3 27\: -\: \log_9 3 \)
(h) \( \scriptsize \log_{3} 64\: \times \: \log_8 243 \)