Topic Content:
- Laws of Logarithms
1. \( \scriptsize log_aMN = log_aM+ log_aN \\ \ \scriptsize \rightarrow a^x \; \times \; a^y = a^x + a^y \)
2. \( \scriptsize log_a \left (\normalsize \frac {M}{N} \right) \scriptsize = log_a M \; – \; log_a N \\ \ \scriptsize → a^x \div a^y = a^{x-y}\)
3. \( \scriptsize log_a (M^n) = nlog_aM \\ \ \scriptsize→(a^x)^y = a^{xy}\)
(for any base “a” > 0, where a 1)
- Note that the three basic laws of logarithms are closely related to those of indices given earlier on.
- Note that \( \frac{logM}{logN} \neq \scriptsize log M \; – \; log N \)
Special Logarithms
4. logaa = 1 → \( \scriptsize a^1 = a \)
5. loga1 = 0 → \( \scriptsize a^0 \)
6. \( \scriptsize log_a \left ( \normalsize \frac{1}{a} \right) = \scriptsize -1 \rightarrow a^{-1} = \frac{1}{a} \)
7. \(\scriptsize log_a \left ( \normalsize \frac {1}{x} \right) \scriptsize = -log_a x \)