Topic Content:
- Solving Logarithmic Equations
Example 2.4.1:
Solve the following equations:
(i) log (2x +1) – log (3x – 2) = 1
(ii) log8x – 4log8x = 2
(iii) log x + log (x + 3) = 1
(iv) log x – log (2x – 1) = 1
Solution:
(i) log (2x + 1) – log (3x – 2) = 1
⇒ \( \scriptsize \log \normalsize \frac{2x + 1}{3x – 2} = \scriptsize 1\)
change to index form
⇒ \( \normalsize \frac{2x + 1}{3x – 2} = \scriptsize 10^1 \)
cross multiply
⇒ 2x + 1 = 10(3x – 2)
2x + 1 = 30x – 20
collect like terms
28x = 21
x = \( \frac{21}{28} \)
x = \( \frac{3}{4} \)
(ii) log8x – 4log8x = 2
⇒ \( \scriptsize \log_8 x\; – \; \log_8 x^4 = 2 \)
\( \scriptsize \log_8 \left [ \normalsize \frac{x}{x^4} \right] \scriptsize = 2\)change to index form
i.e. \( \frac{x}{x^4} = \scriptsize 8^2 \)
⇒ \( \frac{1}{x^3} = \scriptsize 8^2 \)
⇒ \( \scriptsize x^3 = \normalsize \frac{1}{\left(2^3 \right)^2} \)
⇒ \( \scriptsize x^3 = \normalsize \frac{1}{2^6 } \)
⇒ \( \scriptsize x^3 = 2 ^{-6} \)
Take the cube root of both sides
i.e. \( \scriptsize \sqrt[3]{x^3} = \sqrt[3]{2 ^{-6} }\)
⇒ \( \scriptsize x = 2 ^{-2} \)
⇒ \( \scriptsize x = \normalsize \frac{1}{4}\)
(iii) log x + log (x + 3) = 1
log [x(x + 3)] = 1
log (x2 + 3x) = 1
Change to index form
\( \scriptsize x^2 \: + \: 3x = 10^1 \) \( \scriptsize x^2 \: + \: 3x \: – \: 10 = 0 \)(x – 2)(x + 5) = 0
⇒ x = 2 or -5.
(iv) log x – log (2x – 1) = 1
\( \scriptsize \log \normalsize \frac{x}{2x – 1} \scriptsize = 1 \)change to index form
⇒ \( \normalsize \frac{x}{2x – 1} \scriptsize = 10 \)
cross multiply
i.e. x = 20x – 10
collect like terms
⇒ 19x = 10
x = \( \frac {10}{19} \)
Example 2.4.2:
Given log 2 = 0.3010 and log 3 = 0.4771 and log 7 = 0.8451
Evaluate the following:
(i) log 8.1
(ii) log 42
(iii) log 37.5
(iv) log √60
(v) log 0.72
Solution:
(i) log 8.1
log 8.1 = \( \scriptsize \log \normalsize \frac {81}{10} \)
= log 81 – log 10
= \( \scriptsize \log 3^4 – 1 \)
= 4log3 – 1
(From the question log 3 = 0.4771, so we substitute)
= 4(0.4771) – 1
= 1.9084 – 1
= 0.9084
(ii) log 42
= log (7 × 6)
= log 7 + log 6
= log 7 + log (2 × 3)
= log 7 + log 2 + log 3
Given log 2 = 0.3010 and log 3 = 0.4771 and log 7 = 0.8451
= 0.8451 + 0.3010 + 0.4771
= 1.6232
(iii) log 37.5
\( \scriptsize \log \left (\frac {375}{10} \right) \)= \( \scriptsize \log \left ( \frac {75}{2} \right) \)
= log 75 – log 2
= log (25 × 3) – log 2
= log 25 + log 3 – log 2
= \( \scriptsize \log 5^2 \: + \: \log 3\: – \: \log 2 \)
= 2log 5 + log 3 – log 2
= \( \scriptsize 2 \left [ \log \frac{10}{2} \right ] \: + \: \scriptsize log3 \: – \: log2\)
= 2[log 10 – log 2] + log 3 – log 2
= 2[1 – 0.3010] + 0.4771 – 0.3010
= 2[0.699] + 0.4771 – 0.3010
= 1.398 + 0.4771 – 0.3010
= 1.8751 – 0.3010
= 1.5741
(iv) \( \scriptsize \log \sqrt{60} \)
= \( \scriptsize \log 60^{\frac{1}{2}} \)
⇒ \( \frac{1}{2} \scriptsize \log 60 \)
⇒ \( \frac{1}{2} \scriptsize \log \left (6 \; \times \; 10 \right) \)
⇒ \( \frac{1}{2} \left [ \scriptsize \log 6 \; + \; \log 10 \right] \)
⇒ \( \frac{1}{2} \left [ \scriptsize \log \left(2 \; \times \; 3 \right) \; + \; \log 10 \right] \)
⇒ \( \frac{1}{2} \left [ \scriptsize \log 2 \; + \; \log 3 \; +\; 1\right] \)
⇒ \( \frac{1}{2} \left [ \scriptsize 0.3010 \; + \; 0.4771 \; +\; 1 \right ] \)
⇒ \( \frac{1}{2} \scriptsize [1.7781] \)
⇒ 0.88905
= 0.8891 (4 s.f)
(v) log 0.72
⇒ \( \scriptsize \log\frac {72}{100}\)
⇒ log 72 – log 100
⇒ \( \scriptsize \log (9 \; \times \; 8) \; – \; \log 10^2 \)
⇒ log 9 + log 8 – 2
⇒ \( \scriptsize \log 3^2\; + \; \log 2^3 \; – \; 2 \)
⇒ 2log 3 + 3 log 2 – 2
⇒ 2(0.4771) + 3(0.3010) – 2
⇒ 0.9542 + 0.9030 – 2
⇒ 1.8572 – 2
⇒ -0.1428
Example 2.4.3:
Solve the following Simultaneous equations:
(i) log6x – log6y = 1, log6x + log6y = 3
(ii) log2x + log2y = 5, log4x – log4y = -0.5
Solution (i):
1st Method:
(i). log6x – log6y = 1 …….. (i)
(ii). log6x + log6y = 3 ……..(ii)
add equations (i) and (ii)
⇒ 2log6x = 4
⇒ log6x = 2
change to index form
⇒ 62 = x
⇒ x = 36
substituting for x in equation (ii)
⇒ log636 + log6y = 3
⇒ log662 + log6y = 3
⇒ 2log66 + log6y = 3
⇒ 2 x 1 + log6y = 3
⇒ 2 + log6y = 3
log6y = 1
⇒ y = 61
y = 6
2nd Method
(i) log6x – log6y = 1 …….. (i)
(ii) log6x + log6y = 3 ……..(ii)
using the laws of logarithm for equations (i) and (ii)
⇒ \( \scriptsize log_6 \normalsize \frac{x}{y} \scriptsize = 1 \)
⇒ \( \left( \frac{x}{y} \right) = \scriptsize 6^1 \)
⇒ x = 6y ………(iii)
also, log6 xy = 3
⇒ xy = 63 ………..(iv)
substitute for x in equation (iv)
⇒ (6y)y = 216
⇒ 6y2 = 216
⇒ y2 = 36
⇒ \( \scriptsize y = \pm 6 \)
substitute for y in equation (iii)
when y = -6, x = -36, y = 6, x = 36
Therefore, \( \scriptsize x = \pm 36 \)
Solution (ii):
(i). log2x + log2y = 5 …………..(i)
(ii) log4x – log4y = -0.5 …………..(ii)
change equation (ii) to base 2
⇒ \( \frac{\log_2 x}{\log_2 4} \; – \; \frac{\log_2 y}{2 \log_2 2} = \scriptsize \; -0.5 \)
⇒ \( \frac{\log_2 x}{2 \log_2 2} \; – \; \frac{\log_2 y}{2 \log_2 2} = \; -\frac{1}{2} \)
⇒ \( \scriptsize \frac{1}{2} \log_2 x \: – \: \frac{1}{2} \log_2 y = \: – \: \frac{1}{2} \)
divide through by \( \frac{1}{2} \)
⇒ \( \scriptsize \log_2 x \: – \: log_2 y = \: -1 \) ……………..(iii)
⇒ \( \scriptsize \log_2 x \: – \: log_2 y = 5\) ……………..(i)
add equations (i) and (iii)
2 log2x = 4
log2x = 2
x = 22
x = 4
substitute for x in equation (i)
⇒ log24 + log2y = 5
log24y = 5
4y = 25
4y = 32
⇒ y = \( \frac{32}{4} \)
⇒ y = 8