Topic Content:
- Simultaneous Equations – One Linear & One Quadratic
A linear equation is an equation that does not contain any powers higher than 1.
A quadratic equation is an equation with the highest power of 2.
Example 2.2.1:
Solve the following simultaneous equations:
i. 2x + y = 4; x2 + xy = -12
ii. x2 + y2 = 29; x + y = 7
iii. x + y = 5; x2 – 2y2 = 1
iv. y – 5x = 3; x2 – y2 = -45 (WAEC)
i. 2x + y = 4; x2 + xy = -12
Solution:
(i) Let
x2 + xy = -12 ……….(i)
2x + y = 4 ………..(ii)
Re-write as
y = 4 – 2x ………….(iii)
Substitute for y in equation (i)
x2 + x(4 – 2x) = -12
Expand brackets
⇒ x2 + 4x – 2x2 = -12
⇒ x2 – 2x2 + 4x + 12 = 0
⇒ -x2 + 4x + 12 = 0
multiply through by -1
⇒ x2 – 4x -12 = 0
Factorise
⇒ x2 – 6x + 2x -12 = 0
⇒ x(x – 6) + 2(x -6) = 0
⇒ (x + 2)(x – 6) =0
∴ x = -2 or x = 6
Substitute for x in equation (iii)
⇒ y = 4 – 2x ………….(iii)
When x = -2
⇒ y = 4 – 2(-2)
∴ y = 4 + 4
∴ y = 8
When x = 6
⇒ y = 4 – 2(6)
⇒ y = 4 -12
y = -8
∴ the coordinate (x, y) is given as
(-2, 8) or (6, -8)
ii. x2 + y2 = 29; x + y = 7
Solution
⇒ x2 + y2 = 29 ………..(i)
⇒ x + y = 7 …………(ii)
Re-write as
⇒ y = 7 – x ……… (iii)
Substitute for y in equation (i)
⇒ x2 + (7 – x)2 ………….(iv)
⇒ x2 + 49 – 14x + x2 = 29
⇒ 2x2 – 14x + 20 = 0
Divide both sides by 2
⇒ x2 – 7x + 10 = 0
⇒ (x – 2)(x – 5) = 0
∴ x = 2 or x = 5
Substitute for x in equation (iii)
y = 7 – 2 or y = 7 – 5
y = 5 or y = 2
When x = 2, y = 5 or when x = 5, y = 2
When x = 2, y = 5 or when x = 5, y = 2
⇒ (2, 5) (5, 2)
iii. x + y = 5; x2 – 2y2 = 1
Solution
⇒ x2 – 2y2 = 1 ……….(i)
⇒ x + y = 5 ………(ii)
⇒ x = 5 – y ……………(iii)
Substitute for x in equation (i)
⇒(5 – y)2 – 2y2 = 1
⇒ 25 – 10y + y2 – 2y2 = 1
⇒ 25 – 10y – y2 = 1
⇒ – y2 – 10 + 25 – 1 = 0
⇒ – y2 – 10 + 24 = 0
multiply through by -1
⇒ y2 + 10y – 24 = 0
factorise
⇒ y2 + 12y – 2y – 24 = 0
⇒ y(y + 12) – 2(y + 12) = 0
⇒ (y – 2) (y + 12) = 0
∴ y = 2 or y = -12
Substitute for y in equation (iii)
⇒ x = 5 – y ……………(iii)
When y = 2
⇒ x = 5 – 2
⇒ x = 3
∴ (x, y) = (3, 2)
When y = -12
⇒ x = 5 – (-12)
⇒ x = 5 + 12
⇒ x = 17
∴ (x, y) = (17, -12)
iv. y – 5x = 3; x2 – y2 = -45
Solution
x2 – y2 = -45 ………..(i)
y – 5x = 3 …………(ii)
y = 5x + 3 …………(iii)
Substitute for y in equation (i)
⇒ x2 – (5x + 3)2 = -45
⇒ x2 – [25x2 + 30x + 9] = -45
⇒ x2 – 25x2 – 30x – 9 = -45
⇒ – 24x2 – 30x – 9 + 45 = 0
⇒ – 24x2 – 30x + 36 = 0
multiply through by -1
⇒ 24x2 + 30x – 36 = 0
⇒ 4x2 + 5x – 6 = 0
factorise
(4x -3)(x + 2) = 0
4x – 3 = 0 or x + 2 = 0
4x = 3 or x = -2
x = \( \frac {3}{4} \) or x = -2
Substitute for x in equation (iii)
y = 5x + 3 …………(iii)
When x = -2
y = 5(-2) + 3
= -10 + 3
y = -7
When x =\( \frac {3}{4} \), y = \(\scriptsize 5 \left( \frac {3}{4}\right) \:+ \:3 \\=\frac{15}{4}\: + \: \frac {3}{1} \\ = \frac{15 \:+\: 12}{4} \\ = \frac{27}{4}\\ = \scriptsize 6 \normalsize \frac{3}{4} \)
Answer: (-2, -7) or \(\left(\frac {3}{4}, \: \scriptsize 6 \normalsize \frac{3}{4} \right ) \)
this really help alot
This is very nice
I hope to see the rest on the solutions