Topic Content:
- Algebraic Solution
- Substitution Method
- Elimination Method
Algebraic Solution:
This involves:
- Substitution Method
- Elimination Method
Substitution Method:
Example 2.1.1:
Use the substitution method to solve the following pairs of simultaneous equations
(a) q + 2r = 8; r – \( \frac{q}{2} \) + 1 = 0
(b) y – \( \frac{x}{4} \) = 3; 3y + x = 23
Solution:
(a) q + 2r = 8; r – \( \frac{q}{2} \) + 1 = 0
⇒ Simplify \( \scriptsize r \: – \: \normalsize \frac {q}{2} \scriptsize \: + \: 1 = 0 \)
⇒ Re-write as \( \scriptsize r\: -\: \normalsize \frac {q}{2} \scriptsize = \: -1 \)
Multiply both sides by 2
⇒ 2r – q = -2 …………(1)
From the question we write down the other equation
⇒ q + 2r = 8 …………(2)
Make q the subject
⇒ q = 8 – 2r ………….(3)
Substitute for q in equation (1)
⇒ 2r – q = -2 …………(1)
⇒ 2r – (8 – 2r) = -2
Expand brackets
⇒ 2r – 8 + 4r = -2
⇒ 6r – 8 = -2
Collect like terms
⇒ 6r = -2 + 8
⇒ 6r = 6
Divide both sides by 6
⇒ r = 1
Substitute for r in equation (3)
⇒ q = 8 – 2r ………….(3)
⇒ q = 8 – 2(1)
⇒ q = 8 – 2
⇒ q = 6
Check:
2r + q = 8
2(1) + 6 = 8
2 + 6 = 8
8 = 8
(b) y – \( \frac{x}{4} \) = 3; 3y + x = 23
⇒ Simplify \( \scriptsize y\: – \: \normalsize \frac {x}{4} \scriptsize = 3 \)
Multiply both sides by 4
⇒ 4y – x = 12 ……….(i)
From the question, write down the other equation
⇒ 3y + x = 23 ………………..(ii)
Make x the subject of the equation
⇒ x = 23 – 3y …………….(iii)
Substitute for x in equation (i)
⇒ 4y – x = 12 ……….(i)
⇒ 4y – (23 – 3y) = 12
open brackets
⇒ 4y – 23 + 3y = 12
⇒ 4y + 3y = 12 + 23
⇒ 7y = 35
divide both sides by 7
⇒ \(\frac{\not{7}y}{\not{7}} = \frac{35}{7}\)
⇒ y = 5
Substitute for y in equation (iii)
⇒ x = 23 – 3y …………….(iii)
⇒ x = 23 – 3(5)
⇒ x = 23 – 15
⇒ x = 8
Check:
3y + x = 23
3(5) + 8 = 23
15 + 8 = 23
23 = 23
Elimination Method:
Example 2.1.2:
Use elimination method to solve the following pairs of simultaneous equations:
(a) p + r = \( \frac{1}{4} \); 5p + 2r = 2
(b) 3p – 2r = 21; 4p + 5 r = 5
Solution:
(a) p + r = \( \frac{1}{4} \); 5p + 2r = 2
First, let’s eliminate r. We achieve this by getting a get a common coefficient of r in both equations.
⇒ 5p + 2r = 2 ………….(i)
Divide both sides by 2
⇒ \( \frac{5}{2} \scriptsize p + r = 1 \) ………….(ii)
⇒ p + r = \( \frac{1}{4} \) …………..(iii)
To eliminate r subtract equation (iii) from (ii)
⇒ \(\left ( \frac{5}{2} \scriptsize p \: – \: p \right) + \scriptsize (r \: – \: r) =\left( \scriptsize 1 \: – \: \normalsize \frac{1}{4} \right) \)
⇒ \(\normalsize \frac{3}{2} \scriptsize p = \normalsize \frac{3}{4}\)
Multiply both sides by 2
⇒ \(\normalsize \frac{3}{2} \scriptsize p \: \times \: 2 = \normalsize \frac{3}{4}\scriptsize \: \times \: 2\)
⇒ 3p = \(\frac{3}{2}\)
Divide both sides by 3
⇒ \(\frac{3p}{3} =\frac{ \frac{3}{2}}{3}\)
⇒ \(\frac{3p}{3} = \frac{3}{2} \: \times \: \frac{1}{3}\)
⇒ p = \(\frac{1}{2}\)
Substitute for p in equation (iii)
⇒ \(\frac{1}{2} \scriptsize \: + \: r = \normalsize \frac{1}{4}\)
⇒ r = \(\frac{1}{4}\: -\: \frac{1}{2} \)
⇒ r = \(\: – \frac{1}{4} \)
(b) 3p – 2r = 21; 4p + 5 r = 5
⇒ 3p – 2r = 21 …………..i × 4 (Multiply by 4)
⇒ 4p + 5r = 5 …………..ii × 3 (Multiply by 3)
⇒ 12p – 8r = 84 ……………(iii)
⇒ 12p + 15r = 15 ……………(iv)
Subtract equation (iv) from (iii)
⇒ -23r = 69
Divide both sides by -23
⇒ \( \frac {-23r}{-23} = \frac {69}{-23} \)
⇒ r = -3
Substitute for r in equation (i)
⇒ 3p – 2 (- 3 ) = 21
3p + 6 = 21
3p = 15
p = \(\frac{15}{3}\)
⇒ p = 5
Check:
3p – 2r = 21
3(5) – 2(-3) = 21
15 + 6 = 21
21 = 21