Back to Course

SS3: MATHEMATICS - 1ST TERM

0% Complete
0/0 Steps
  1. Surds
    7 Topics
    |
    2 Quizzes
  2. Theory of Logarithms
    3 Topics
    |
    1 Quiz
  3. Matrices I
    6 Topics
  4. Matrices II
    6 Topics
    |
    1 Quiz
  5. Surface Area and Volume of Sphere
    5 Topics
    |
    1 Quiz
  6. Longitude & Latitude
    5 Topics
    |
    1 Quiz
  • excellence
  • Follow

Lesson 4, Topic 6
In Progress

Theory Questions – Matrices & Determinants

Lesson Progress
0% Complete

Topic Content:

  • Theory Questions & Answers - Matrices & Determinants

Theory Questions & Answers - Matrices & Determinants:

1. Given that

M = \( \scriptsize \begin{pmatrix}1& 2\\4& 3\end{pmatrix} \)

N = \( \scriptsize \begin{pmatrix}m& x\\n& y\end{pmatrix} \)

MN = \( \scriptsize \begin{pmatrix}2& 1\\3& 4\end{pmatrix} \)

Find the matrix N.

View Solution

 

You are viewing an excerpt of this Topic. Subscribe Now to get Full Access to ALL this Subject's Topics and Quizzes for this Term!

Click on the button "Subscribe Now" below for Full Access!

Subscribe Now

Note: If you have Already Subscribed and you are seeing this message, it means you are logged out. Please Log In using the Login Form Below to Carry on Studying!

Subscribe
Notify of
guest
0 Comments
Oldest
Newest
Inline Feedbacks
View all comments

Question 1

Question: Given that

M = \( \scriptsize \begin{pmatrix}1& 2\\4& 3\end{pmatrix} \)

N = \( \scriptsize \begin{pmatrix}m& x\\n& y\end{pmatrix} \)

MN = \( \scriptsize \begin{pmatrix}2& 1\\3& 4\end{pmatrix} \)

Find the matrix N.

Solution

Given that

MN = \( \scriptsize \begin{pmatrix}2& 1\\3& 4\end{pmatrix} \)

∴ M × N = MN

\( \scriptsize \begin{pmatrix}m+2n & x + 2y\\4m + 3n & 4x + 3y\end{pmatrix} \scriptsize  = \scriptsize \begin{pmatrix}2& 1\\3& 4\end{pmatrix}\)

Step 2: Simplifying the above we have

Step 3: using equality of matrix, then we have

m + 2n = 2 ————– (1)

x + 2y = 1 ————— (2)

4m + 3n = 3 ————- (3)

4x + 3y = 4 ————– (4)

Solving equations (1) and (3)

m + 2n = 2

m = 2 – 2n ————- (*)

Substitute m in equation (3)

4(2 – 2n) + 3n = 3

8 – 8n + 3n = 3

8 – 5n = 3

-5n = 3 – 8

-5n = -5

n = \( \frac{-5}{-5} \)

n = 1

Step 4: substitute n = 1 into (*)

m = 2 – 2 (1)

m = 2 – 2

m = 0

  n = 1 and m = 0

Step 5: Solving equations (2) and (4) from (2)

x = 1 – 2y ———– (**)

Step 6: substitute x = 1 – 2y in equation (4)

  4 (1 -2y) + 3y = 4

4 – 8y + 3y = 4

4 – 5y = 4

-5y = 4 – 4

-5y = 0

y = \( \frac{0}{-5} \)

y = 0

Step 7: substitute y = 0 in equation (**)

x = 1 – 2(0)

x = 1 – 0

x = 1

Step 8: hence the matrix

N = \( \scriptsize \begin{pmatrix}m& x\\n& y\end{pmatrix} \)

= \( \scriptsize \begin{pmatrix}0 & 1\\1 & 0\end{pmatrix} \)

 

0
Would love your thoughts, please comment.x
()
x