Topic Content:
- Meaning of Composite Solid
- Surface Area and Volume of Solid Shapes
A composite shape contains two or more basic shapes. To get the volume of the component shape, add the volume of the individual shapes that make up the composite. Similarly, to get the total surface area, add up the surface areas of the basic shapes.
Surface Area and Volume of Solid Shapes:
Solid: | Image: | Formula: |
Cube | ![]() | Volume = l3 Curved Surface Area = 4l2 Total Surface Area = 4l2 + 2l2 = 6l2 |
Cuboid | ![]() | Volume = lbh Curved Surface Area = 2h(l + b) Total Surface Area = 2lb + 2bh + 2lh = 2(lb + bh + lh) |
Cylinder | ![]() | Volume = πr2h Curved Surface Area = 2πrh Total Surface Area = 2πrh + 2πr2 = 2πr(h + r) |
Cone | ![]() | Volume = \( \frac{1}{3} \scriptsize \pi r^2 h \) Curved Surface Area = πrl Total Surface Area = πrl + πr2 = πr(l + r) |
Sphere | ![]() | Volume = \( \frac{4}{3} \scriptsize \pi r^3 \) Curved Surface Area = 4Ï€r2 Total Surface Area = 4Ï€r2 |
HemisphereA hemisphere is half the Earth's surface. The four hemispheres are the Northern and Southern hemispheres, divided by the equator (0° latitude), and the Eastern and Western hemispheres, divided by the... More | ![]() | Volume = \( \frac{2}{3} \scriptsize \pi r^3 \) Curved Surface Area = 2πr2 Total Surface Area = 2πr2 + πr2 = 3πr2 |
Example 5.4.1:

In the diagram above, a cylinder is surmounted by a hemisphere bowl. Calculate the volume of the solid.
Solution
Volume of the solid = Volume of cylinder + Voume of hemisphere
Volume of cylinder = πr2h
= π x 32 x 20
= π x 9 x 20
= 180 π cm3
Voume of hemisphere = \( \frac{2}{3} \scriptsize \pi r^3 \\ = \frac{2}{3} \scriptsize \: \times \: \pi \: \times \: 3^3 \\ = \frac{2}{3} \scriptsize \: \times \: \pi \: \times \: 27 \\ = \scriptsize 2 \: \times \: \pi \: \times \: 6 \\ = \scriptsize 18 \: \pi \: cm^3 \)
Volume of the solid = 180 π cm3 + 18 π cm3
Volume of the solid = 198 π cm3
Example 5.4.2:
A water reservoir in the form of a cone mounted on a hemisphere is built such that the plane face of the hemisphere fits exactly to the base of the cone and the height of the cone is 6 times the radius of its base.
(a) Illustrate this information in a diagram.
(b) If the volume of the reservoir is \( \scriptsize 333 \frac{1}{3} \scriptsize \pi \:m^3\), calculate, correct to the nearest whole number, the :
(I) Volume of the hemisphere;
(II) Total surface area of the reservoir.
[Take π = \( \frac{22}{7} \)] (WAEC 2015)
Solution
(a)

(b) (I) Volume of the hemisphere
Step 1: The volume of the reservoir = \( \scriptsize 333 \frac{1}{3} \pi \:m^3 \) Given
But by formula:
Volume of reservoir = Volume of the hemisphere + Volume of the cone
Step 2:
- Volume of the hemisphere = \(\frac{1}{2} \: \times \: \frac{4}{3} \scriptsize \pi r^3 \)
- Volume of the hemisphere = \( \frac{2}{3} \scriptsize \pi r^3 \)
- Volume of cone = \(\frac{1}{3} \scriptsize \pi r^2 h \)
⇒ \( \scriptsize 333 \frac{1}{3} \pi = \normalsize \frac{2}{3} \scriptsize \pi r^3 \: + \: \normalsize \frac{1}{3} \scriptsize \pi r^2 h \)
⇒ \( \normalsize \frac{1000}{3} \scriptsize \pi = \normalsize \frac{1}{3} \scriptsize \pi \left (\scriptsize 2r^3 \: +\: r^2h \right )\)
Let the radius of the hemisphere be x m;
⇒ \( \frac{1000}{3} = \normalsize \frac{1}{3} \scriptsize \left (\scriptsize 2x^3 \: +\: x^2(6x) \right )\)
⇒ \( \scriptsize 1000 = 2x^3 \: +\: 6x^3 \)
⇒ \( \scriptsize 1000 = 8x^3 \)
⇒ \( \scriptsize x^3 = \normalsize \frac{1000}{8} \)
⇒ \( \scriptsize x^3 = 125 \)
⇒ \( \scriptsize x = \sqrt[3]{125}\)
⇒ \( \scriptsize x = 5\:m\)
Step 3: The volume of the hemisphere is obtained from the formula:
Volume = \( \frac{2}{3} \scriptsize \pi r^3 \)
Volume = \( \frac{2}{3} \: \times \: \frac{22}{7} \scriptsize \: \times \: 5^3 \)
= \( \frac{5500}{21} \)
= 261.905 m3
= 262 m3 (to the nearest whole number)
(II) Total surface area of the reservoir
Step 1: Total surface area of the reservoir = curved surface area of the cone + surface area of the hemisphere
Total surface area = \( \scriptsize \pi r l \: + \: \normalsize \frac{1}{2} \scriptsize \: \times \: 4 \pi r^2 \)
Total surface area = \( \scriptsize \pi r l \: + \: 2 \pi r^2 \)
Step 2: To obtain the value of l, we consider the triangle below

- If x = 5 cm
- ; then the height 6x = 6 × 5 = 30 cm
⇒ \( \scriptsize l^2 = 30^2 \: + \: 5^2 \)
⇒ \( \scriptsize l^2 = 900 \: + \: 25 \)
⇒ \( \scriptsize l^2 = 925 \)
⇒ \( \scriptsize l = \sqrt{925} \)
⇒ \( \scriptsize l = 30.41\:m \)
Step 4: Therefore;
T.S. = \( \frac{22}{7} \left [\scriptsize (5 \: \times \: 30.41) \: + \: (2 \: \times \: 5^2) \right ] \)
T.S. = \( \frac{22}{7} \left [\scriptsize 152.05 \: + \: 50 \right ] \)
T.S. = \( \frac{22}{7} \: \times \: \frac{202.05}{1}\)
T.S. = \( \frac{4445.1}{7} \)
T.S. = 635.01
T.S. = 635 m2 (nearest whole number)