Back to Course

SS3: MATHEMATICS - 1ST TERM

0% Complete
0/0 Steps
  1. Surds
    7 Topics
    |
    2 Quizzes
  2. Theory of Logarithms
    3 Topics
    |
    1 Quiz
  3. Matrices I
    6 Topics
  4. Matrices II
    6 Topics
    |
    1 Quiz
  5. Surface Area and Volume of Sphere
    5 Topics
    |
    1 Quiz
  6. Longitude & Latitude
    5 Topics
    |
    1 Quiz
  • excellence
  • Follow

Lesson Progress
0% Complete

Topic Content:

  • Meaning of Composite Solid
  • Surface Area and Volume of Solid Shapes

A composite shape contains two or more basic shapes. To get the volume of the component shape, add the volume of the individual shapes that make up the composite. Similarly, to get the total surface area, add up the surface areas of the basic shapes.

Surface Area and Volume of Solid Shapes:

Solid:Image:Formula:
Cubecube 3Volume = l3

Curved
Surface Area
= 4l2

Total
Surface Area
=
4l2 + 2l2 = 6l2
CuboidScreenshot 2024 08 21 at 08.05.29Volume = lbh

Curved
Surface Area
= 2h(l + b)

Total
Surface Area
= 2lb + 2bh + 2lh
= 2(lb + bh + lh)
CylindercylinderVolume = πr2h

Curved
Surface Area
= 2Ï€rh

Total
Surface Area
= 2Ï€rh + 2Ï€r2
= 2Ï€r(h + r)
ConeScreenshot 2024 08 21 at 09.11.18Volume = \( \frac{1}{3} \scriptsize \pi r^2 h \)

Curved
Surface Area
= πrl

Total
Surface Area
= πrl + πr2
= πr(l + r)
Spherevolume of sphereVolume = \( \frac{4}{3} \scriptsize \pi r^3 \)

Curved
Surface Area
= 4Ï€r2

Total
Surface Area
= 4Ï€r2
Hemispherevolume of hemisphereVolume = \( \frac{2}{3} \scriptsize \pi r^3 \)

Curved
Surface Area
= 2Ï€r2

Total
Surface Area
= 2πr2 + πr2
= 3Ï€r2

Example 5.4.1:

Screenshot 2024 08 21 at 11.07.54

In the diagram above, a cylinder is surmounted by a hemisphere bowl. Calculate the volume of the solid.

Solution

Volume of the solid = Volume of cylinder + Voume of hemisphere

Volume of cylinder = πr2h
= π x 32 x 20
= π x 9 x 20
= 180 π cm3

Voume of hemisphere = \( \frac{2}{3} \scriptsize \pi r^3 \\ = \frac{2}{3} \scriptsize \: \times \: \pi \: \times \: 3^3 \\ = \frac{2}{3} \scriptsize \: \times \: \pi \: \times \: 27 \\ = \scriptsize 2 \: \times \: \pi \: \times \: 6 \\ = \scriptsize 18 \: \pi \: cm^3 \)

Volume of the solid = 180 π cm3 + 18 π cm3

Volume of the solid = 198 π cm3

Example 5.4.2:

A water reservoir in the form of a cone mounted on a hemisphere is built such that the plane face of the hemisphere fits exactly to the base of the cone and the height of the cone is 6 times the radius of its base.

(a) Illustrate this information in a diagram.

(b) If the volume of the reservoir is \( \scriptsize 333 \frac{1}{3} \scriptsize \pi \:m^3\), calculate, correct to the nearest whole number, the :

(I) Volume of the hemisphere;
(II) Total surface area of the reservoir.

[Take π = \( \frac{22}{7} \)] (WAEC 2015)

Solution

(a)

cone and hemisphere

(b) (I) Volume of the hemisphere

Step 1: The volume of the reservoir = \( \scriptsize 333 \frac{1}{3} \pi \:m^3 \) Given

But by formula:

Volume of reservoir = Volume of the hemisphere + Volume of the cone

Step 2:

  • Volume of the hemisphere = \(\frac{1}{2} \: \times \: \frac{4}{3} \scriptsize \pi r^3 \)
  • Volume of the hemisphere = \( \frac{2}{3} \scriptsize \pi r^3 \)
  • Volume of cone = \(\frac{1}{3} \scriptsize \pi r^2 h \)

⇒ \( \scriptsize 333 \frac{1}{3} \pi   =  \normalsize  \frac{2}{3} \scriptsize \pi r^3 \: + \: \normalsize \frac{1}{3} \scriptsize \pi r^2 h \)

⇒ \( \normalsize  \frac{1000}{3} \scriptsize \pi   =  \normalsize \frac{1}{3} \scriptsize \pi  \left (\scriptsize 2r^3 \: +\: r^2h \right )\)

Let the radius of the hemisphere be x m;

⇒ \(  \frac{1000}{3} =  \normalsize \frac{1}{3} \scriptsize  \left (\scriptsize 2x^3 \: +\: x^2(6x) \right )\)

⇒ \(  \scriptsize 1000 = 2x^3 \: +\: 6x^3 \)

⇒ \(  \scriptsize 1000 = 8x^3 \)

⇒ \(  \scriptsize x^3 = \normalsize \frac{1000}{8} \)

⇒ \(  \scriptsize x^3 = 125 \)

⇒ \(  \scriptsize x = \sqrt[3]{125}\)

⇒ \(  \scriptsize x = 5\:m\)

Step 3: The volume of the hemisphere is obtained from the formula:

Volume = \( \frac{2}{3} \scriptsize \pi r^3 \)

Volume = \( \frac{2}{3} \: \times \: \frac{22}{7} \scriptsize \: \times \: 5^3 \)

= \( \frac{5500}{21} \)

= 261.905 m3

= 262 m3 (to the nearest whole number)

(II) Total surface area of the reservoir

Step 1: Total surface area of the reservoir = curved surface area of the cone + surface area of the hemisphere

Total surface area = \( \scriptsize \pi r l \: + \: \normalsize \frac{1}{2} \scriptsize \: \times \: 4 \pi r^2 \)

Total surface area = \( \scriptsize \pi r l \: + \: 2 \pi r^2 \)

Step 2: To obtain the value of  l, we consider the triangle below

Screenshot 2024 08 21 at 10.45.24
  • If x = 5 cm
  • ; then the height 6x = 6 × 5 = 30 cm

⇒ \( \scriptsize l^2 = 30^2 \: + \: 5^2 \)

⇒ \( \scriptsize l^2 = 900 \: + \: 25 \)

⇒ \( \scriptsize l^2 = 925 \)

⇒ \( \scriptsize l = \sqrt{925} \)

⇒ \( \scriptsize l = 30.41\:m \)

Step 4: Therefore;

T.S. = \( \frac{22}{7} \left [\scriptsize  (5 \: \times \: 30.41) \: + \: (2 \: \times \: 5^2)  \right ] \)

T.S. = \( \frac{22}{7} \left [\scriptsize   152.05 \: + \: 50  \right ] \)

T.S. = \( \frac{22}{7}  \: \times  \: \frac{202.05}{1}\)

T.S. = \( \frac{4445.1}{7}  \)

T.S. = 635.01

T.S. = 635 m2 (nearest whole number)

Subscribe
Notify of
guest
0 Comments
Oldest
Newest
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x