Example
Solve the triangle in which a = 4.5m, b = 5.3m, and C = 112°

Solution:
To find length c we will use the cosine rule formula.
c2 = a2 + b2 – 2ab Cos C
c2 = 4.52 + 5.32 – 2 × 4.5 × 5.3 × Cos 112°
c2= 20.25 + 28.09 + (47.7 × 0.3746)
c2= 48.34 + 17.87
c2 = 66.27
c = \( \scriptsize \sqrt {66.21} \) = 8.1m
Cos A = \( \frac{b^2 \: + \: c^2 \: – \: a^2}{2bc}\)
= \( \frac{5.3^2 \: + \: 8.1^2 \: – \: 4.5^2}{2 \: \times \: 5.3 \: \times \: 8.1}\)
= \( \frac{28.09 \: + \: 65.61 \: – \: 20.25 }{85.86}\)
= \( \frac{73.45}{85.86}\)
Cos A = 0.8555
A = Cos-1(0.8555)
A = 31.18°
Go ahead and find B
Responses