Lesson Progress
0% Complete
Screenshot 2022 05 17 at 23.59.54

From the geometrical point of view, Pythagoras theorem gives the relation between areas of squares on the sides of a right-angled triangle. Also, from an algebraic point of view, the formula below can be used to solve right-angled triangles.

⇒ \( \scriptsize a^2 = b^2 \: + \: c^2\)

which is \( \scriptsize Hyp^2 = Opp^2 \: + \: Adj^2\)

 Pythagorean Triple:

Screenshot 2022 05 18 at 00.11.43

In ΔABC above, the sides are 3cm, 4cm and 5cm. This is an example of a Pythagorean triple, i.e. a set of 3 whole numbers which can be taken as the lengths of the sides

\( \scriptsize 5^2 = 4^2 \: + \: 3^2\)

\( \scriptsize 25 = 16 \: + \: 9\)

\( \scriptsize 25 = 25\)

When a triangle’s sides are a Pythagorean Triple it is a right-angled triangle.

Another example is 5, 12, 13

Screenshot 2022 05 18 at 00.15.00
\( \scriptsize 13^2 = 5^2 \: + \: 12^2\)

\( \scriptsize 169 = 25 \: + \: 144\)

\( \scriptsize 169 = 169\)

Here is a list of pythagorean triples

(3, 4, 5)(5, 12, 13)(7, 24, 25)(8, 15, 17)
(9, 40, 41)(11, 60, 61)(12, 35, 37)(13, 84, 85)
(15, 112, 113)(16, 63, 65)(17, 144, 145)(19, 180, 181)
(20, 21, 29)(20, 99,101)(21, 220, 221)(23, 264, 265)
(24, 143, 145)(25, 312, 313)(27, 364, 365)(28, 45, 53)
(28, 195, 197)(29, 420, 421)(31, 480, 481)(32, 255, 257)
(33, 56, 65)(33, 544, 545)(35, 612, 613)(36, 77, 85)
(36, 323, 325)(37, 684, 685)… infinitely many more …

Example 1:

If the diagonal of a square is 8cm, what is the area of the square? (WAEC)

Solution:

Screenshot 2022 05 18 at 00.35.20
Figure 1.

Recall, that the diagonals of a square bisect at right angles.

Screenshot 2022 05 18 at 00.47.42

Thus, \( \scriptsize \overline{EB} = \scriptsize \overline{EA} = 4cm \)

We can then find x using ΔAEB (Figure 3)

Screenshot 2022 05 18 at 00.52.27

Using Pythagoras theorem

\( \scriptsize x^2 = \overline{EB}^2 \: + \: \overline{EA}^2 \)

⇒ \( \scriptsize x^2 = 4^2 \: + \: 4^2 \)

\( \scriptsize x^2 = 16 \: + \: 16 \)

\( \scriptsize x^2 = 32 \)

Take the square root of both sides

\( \scriptsize \sqrt{x^2} = \sqrt{32} \)

\( \scriptsize x = \sqrt{32} \: cm \)

Using Figure 1

Area of square = \( \scriptsize x \: \times \: x \)

Area of square = \( \scriptsize \sqrt{32} \: cm \: \times \: \sqrt{32} \: cm \)

Area of square = \( \scriptsize 32 cm^2 \)

OR (2nd Method)

Using Figure 1, Consider ΔABC

Screenshot 2022 05 18 at 01.00.29

Using Pythagoras Theorem

⇒ \( \scriptsize AC^2 = BC^2 \: + \: AB^2 \)

\( \scriptsize 8^2 = x^2 \: + \: x^2 \)

\( \scriptsize 64 = 2x^2 \)

\( \scriptsize 2x^2 = 64 \)

\( \scriptsize x^2 = \frac{64}{2} \)

\( \scriptsize x^2 = 32 cm^2\)

Same as above

Example 2

In the diagram below, O is the centre of circle HKL, |HK| = 16cm,  |HL| = 10cm, and the perpendicular from O to |HK| is 4cm. What is the length of the perpendicular from O to |HL|? (WAEC)

Screenshot 2022 05 18 at 01.09.46

Solution

Redraw the diagram using the information provided

Screenshot 2022 05 18 at 01.28.04

r is the radius and is the distance from the centre O to H

the perpendicular from O to |HK| = |OP| = 4cm

If we find r we can find |OM| which is the length of the perpendicular from O to |HL|

Consider ΔHPO

Screenshot 2022 05 18 at 06.01.52

Using Pythagoras theorem

\( \scriptsize r^2 = opp^2 \: + \: adj^2 \)

\( \scriptsize r^2 = 8^2 \: + \: 4^2\)

\( \scriptsize r = \sqrt{64 \: + \: 16} \)

\( \scriptsize r = \sqrt{64 \: + \: 16} \)

\( \scriptsize r = \sqrt{80} \)

\( \scriptsize r = 4\sqrt{5}\: cm \)

Consider ΔHMO

Screenshot 2022 05 18 at 06.07.13

Using Pythagoras theorem

\( \scriptsize r^2 = HM^2 \: + \: OM^2 \)

\( \scriptsize r^2 = 5^2 \: + \: OM^2 \)

\( \scriptsize OM^2 = r^2 \: – \: 5^2 \)

\( \scriptsize r = \sqrt{80} \)

Therefore \( \scriptsize OM^2 = \sqrt{80}^2 \: – \: 5^2 \)

\( \scriptsize OM^2 = 8.9443^2 \: – \: 5^2 \)

\( \scriptsize OM^2 = 80 \: – \: 25 \)

Take the square root of both sides

\( \scriptsize \sqrt{OM^2} = \sqrt{80 \: – \: 25} \)

\( \scriptsize OM = \sqrt{80 \: – \: 25} \)

\( \scriptsize OM = \sqrt{55} \)

\( \scriptsize OM = 7.416\)

\( \scriptsize OM \approx 7.4 \: cm\)
avatar

Responses

Your email address will not be published. Required fields are marked *